

Beginning
React

Greg Lim

Copyright © 2020 Greg Lim

All rights reserved.

COPYRIGHT © 2020 BY GREG LIM

ALL RIGHTS RESERVED.
NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM

OR BY ANY ELECTRONIC OR MECHANICAL MEANS INCLUDING

INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT

PERMISSION IN WRITING FROM THE AUTHOR. THE ONLY

EXCEPTION IS BY A REVIEWER, WHO MAY QUOTE SHORT

EXCERPTS IN A REVIEW.

SECOND EDITION: APRIL 2020

Table of Contents
PREFACE

CHAPTER 1: INTRODUCTION

CHAPTER 2: CREATING AND USING COMPONENTS

CHAPTER 3: BINDINGS, PROPS, STATE AND EVENTS

CHAPTER 4: WORKING WITH COMPONENTS

CHAPTER 5: CONDITIONAL RENDERING

CHAPTER 6: BUILDING FORMS USING FORMIK

CHAPTER 7: GETTING DATA FROM RESTFUL APIS WITH AXIOS

CHAPTER 8: ROUTING

CHAPTER 9: C.R.U.D. WITH FIREBASE

CHAPTER 10: INTRODUCTION TO REDUX

CHAPTER 11: REACT WITH REDUX

CHAPTER 12: FUNCTION OR CLASS-BASED COMPONENTS?
INTRODUCING HOOKS

ABOUT THE AUTHOR

PREFACE

About this book
Developed by Facebook, React is one of the leading frameworks to build
efficient web user interfaces.
You use small manageable components to build large-scale, data-driven
websites without page reloads. No more wasting time hunting for DOM
nodes!

In this book, we take you on a fun, hands-on and pragmatic journey to master
React from a web development point of view. You'll start building React apps
within minutes. Every section is written in a bite-sized manner and straight to
the point as I don’t want to waste your time (and most certainly mine) on the
content you don't need. In the end, you will have what it takes to develop a
real-life app.

Requirements
Basic familiarity with HTML, CSS, Javascript and object-oriented
programming

Contact and Code Examples
The source codes used in this book can be found in my GitHub repository at
https://github.com/greglim81.

If you have any comments or questions concerning this book to support@i-
ducate.com.

https://github.com/greglim81
mailto:support@i-ducate.com

CHAPTER 1: INTRODUCTION

1.1 What is React?
React is a framework released by Facebook for creating Single Page
Applications (SPA). What is a Single Page Application? Most web
applications are traditionally server-side applications. The server holds the
business logic, stores data, and renders the website to the client. When a
client clicks on a link, it sends a request to the server, and the server will
handle this request and send back a response with html code which the
browser will render and be viewed by the user.

The problem here is that with this approach, the server receives a lot of
requests. For example, when we go to a website and click on its Home page,
we send a request for which the server has to respond. We click on the About
page and it sends another request, and the server responds. We click on Blog
and it sends another request and again the server responds. Essentially,
traditional websites consist of independent HTML pages and when a user
navigates these pages, the browser will request and load different HTML
documents.

The many requests, response incurs a lot of time and resources spent on these
tasks lead to a slow feeling of web pages, whereas the apps on your mobile
phone or desktop feel very fast most of the time. React wants to bring this
app like feeling to the browser where we don ’ t always have to load new
pages each time there is an action from the user.

A user still clicks on various links in a SPA. However, this time, the client
handles the requests on its own and will re-render the html page through
Javascript, so the server is left out here if no data from the server is needed.
This is much faster as we don ’ t have to send data over the Internet. The
client doesn ’ t have to wait for the response, and the server doesn ’ t have to
render the response.

Also, in a SPA, the browser loads one HTML document and when users
navigate through the site, they stay on the same page as Javascript unloads
and loads different views of the app onto the same page itself. The user gets a
feel that she is navigating through pages but is actually on the same HTML

page. Facebook newsfeed is a good example. Other examples are Instagram
or Twitter where the content gets dynamically refreshed without requiring
you to refresh or navigate to a different page.

Manipulating DOM Elements Efficiently
Loading and unloading different views of the same page involve querying
and manipulating DOM elements. Such DOM operations involve adding
children, removing subtrees and can be really slow. This is where React
addresses this shortcoming in manipulating DOM elements efficiently. React
does this by updating the browser DOM for us. With React, we do not
interact with the DOM directly. We instead interact with a virtual DOM
which React uses to construct the actual DOM.

The virtual DOM is made up of React elements (which we specify in JSX –
more about that later) which look similar to HTML elements but are actually
Javascript objects. It is much faster to work with Javascript objects than with
the DOM API directly. We make changes to the Javascript object (the virtual
DOM) and React renders those changes for us as efficiently as possible.

Asynchronous Operations
In times when we need to get or send data from/to the server, we send a
request to the server. But these are mainly restricted to initial loading and
necessary server-side operations like database operations. Besides these
operations, we will not frequently need to request from the server. And if we
do make server requests, we do it asynchronously, which means we still re-
render the page instantly to the user and then wait for the new data to arrive
and incorporate it and re-render only the required view when the data arrives;
thus providing a fluid experience.

Step by Step
In this book, I will teach you about React from scratch in step by step
fashion. You will build an application where you can input search terms and
receive the search results via GitHub RESTful api (fig. 1.1.1).

figure 1.1.1

In the end, you will also build a real-world application with full C.R.U.D.
operations (fig. 1.1.2).

figure 1.1.2

These are the patterns you see on a lot of real-world applications. In this
book, you will learn how to implement these patterns with React.

Although this book covers techniques for developing single-page web
applications with React, web browsers are not the only place React apps can
run. React Native, released in 2015 allows us to develop iOS and Android
native apps with React. And in the future, there is React VR, a framework for
building interactive virtual reality apps that provides 360-degree experiences.

We hope that this book will provide you with a strong base that you can build
applications in React even beyond the web browser.

Using ES6
In this book, we will be using ES6 syntax for our code. Both ES5 and ES6
are just Javascript, but ES6 provide more features for example:
- const (variable that cannot be changed),
- template strings. Instead of console.log(“Hello ” + firstName), we can
concatenate strings by surrounding them with ${}, i.e. console.log(`Hello
${firstName}`)
- arrow functions. In ES6, we can create functions without using the function
keyword which simplifies the syntax.
- In declaring classes, ES6 can leverage on class features, object orientation
as well as life cycle hook methods. Note that the ES5 way of declaring
classes (react.createClass) is deprecated as of React 15.5.

This section is meant to address readers who have a bit of React development
experience and are asking the question of whether to use ES6 or ES5. If you
don’t know what I am referring to, don’t worry about it. We will go through
the concepts in the course of this book. We will aim to use emerging
Javascript whenever possible.

1.2 Thinking in Components
A React app is made up of components. For example, if we want to build a
storefront module like what we see on Amazon, we can divide it into three
components. The search bar component, sidebar component and products
component.

A React component contains a JSX template that ultimately outputs HTML
elements. It has its own data and logic to control the JSX template.

Components can also contain other components. For example, in products
component where we display a list of products, we do so using multiple
product components. Also, in each product component, we can have a rating
component (fig. 1.2.1).

fig. 1.2.1

The benefit of such an architecture helps us to break up a large application
into smaller manageable components. Plus, we can reuse components within
the application or even in a different application. For example, we can re-use
the rating component in a different application.

Below is an example of a component that displays a simple string
‘ Products ’ .
import React, { Component } from 'react';

class Products extends Component {
render() {

return (
<div>

<h2>
Products

</h2>
</div>

);
}

}

As mentioned earlier, we define our React components using a HTML like
syntax known as JSX. JSX is a syntax extension to Javascript. We use JSX to

construct a virtual DOM with React elements. Facebook released JSX to
provide a concise syntax for creating complex DOM trees with attributes.
They hoped to make React more readable like HTML and XML.

This is the big picture of thinking in terms of components. As you progress
through this book, you will see more of this in action.

1.3 Setting Up
Installing Node

First, we need to install NodeJS. NodeJS is a server-side language and we
don’t need it because we are not writing any server-side code. We mostly
need it because of its npm or Node Package Manager. npm is very popular for
managing dependencies of your applications. We will use npm to install
other later tools that we need.

Get the latest version of NodeJS from nodejs.org and install it on your
machine. Installing NodeJS should be pretty easy and straightforward.

To check if Node has been properly installed, type the below on your
command line (Command Prompt on Windows or Terminal on Mac):
node -v

and you should see the node version displayed.

To see if npm is installed, type the below on your command line:
npm -v

and you should see the npm version displayed.

Installing Create-React-App

‘ create-react-app ’ is the best way to start building a new React single page
application. It sets up our development environment so that we can use the
latest Javascript features and optimization for our app. It is a Command Line
Interface tool that makes creating a new React project, adding files and other
on-going development tasks like testing, bundling and deployment easier. It
uses build tools like Babel and Webpack under the hood and provides a
pleasant developer experience for us that we don ’ t have to do any manual

configurations for it.

To install ‘ create-react-app ’ from the command line, run the following:
npm install -g create-react-app

Code Editor

In this book, we will be using VScode (https://code.visualstudio.com/) which
is a good, lightweight and cross-platform editor from Microsoft.

Chrome Browser

We will be using Chrome as our browser. You can use other browsers but I
highly recommend you use Chrome as we will be using Chrome developer
tools in this book and I want to make sure you have the same experience as
we go through the coding lessons.

1.4 Creating a New Project with create-react-app
First, in Terminal, navigate to the folder where you want to create your React
project. Next, create a new React project and skeleton application with the
following command,
create-react-app PROJECT_NAME

This will create your React project folder in that directory with three
dependencies: React, ReactDOM and react-scripts. react-scripts is created by
Facebook and it installs Babel, ESLint, Webpack and more so that we don ’ t
have to configure them manually.

When the folder is created, navigate to it by typing.
cd PROJECT_NAME

Next, type
npm start

The above command launches the server, watches your files and rebuilds the
app as you make changes to those files. You can also run the npm run build
command which creates a production-ready bundle that has been transpiled
and minified.

Now, navigate to http://localhost:3000/ and your app greets you with the message
displayed as in fig.1.4.1.

fig. 1.4.1

Alternatively

In the official documentation of create-react-app
(https://reactjs.org/docs/create-a-new-react-app.html), it shows a different
way of creating a project. I.e.:

npx create-react-app <project_name>

This is an alternate way of creating a React project without the need to run
npm install. But why I didn ’ t show this to you is because npx is a command
line tool that only started to be installed in npm version 5.2 and higher. And it
is likely that you have version 5.2 and earlier. If you want to use npx, you can
upgrade your node version and then run npx. But in the end, there is no
difference between both methods.

Project File Review
Now let’s look at the project files that have been created for us. When you
open the project folder in VScode editor, you will find a couple of files (fig.
1.4.2).

http://localhost:3000/
https://reactjs.org/docs/create-a-new-react-app.html

fig. 1.4.2

We will not go through all the files as our focus is to get started with our first
React app quickly, but we will briefly go through some of the more important
files and folders.

Our app lives in the src folder. All React components, CSS styles, images
(e.g. logo.svg) and anything else our app needs goes here. Any other files
outside of this folder are meant to support building your app (the app folder is
where we will work 99% of the time!). In the course of this book, you will
come to appreciate the uses for the rest of the library files and folders.

In the src folder, we have index.js which is the main entry point for our app.
In index.js, we render the App React element into the root DOM node.
Applications built with just React usually have a single root DOM node.

index.js
import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';

ReactDOM.render(
<React.StrictMode>

<App />

</React.StrictMode>,
document.getElementById('root')

);

serviceWorker.unregister();

In index.js, we import both React and ReactDOM which we need to work
with React in the browser. React is the library for creating views. ReactDOM
is the library used to render the UI in the browser. The two libraries were split
into two packages for version 0.14 and the purpose for splitting is to allow for
components to be shared between the web version of React and React Native,
thus supporting rendering for a variety of platforms.

index.js imports index.css, App component and serviceWorker with the
following lines.
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';

It then renders App with:
ReactDOM.render(

<React.StrictMode>
<App />

</React.StrictMode>,
document.getElementById('root')

);

The last line serviceWorker.unregister() has comments:
// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.
// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.register() is meant to create progressive web apps (PWA)
catered more for mobile React Native apps to work offline. This however is
out of the scope of this book and we can safely leave the code as
serviceWorker.unregister() for now.

App.js
import React from 'react';
import logo from './logo.svg';
import './App.css';

function App() {
return (

<div className="App">
<header className="App-header">

<p>

Edit <code>src/App.js</code> and save to reload.
</p>
<a

className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"

>
Learn React

</header>

</div>
);

}

export default App;

Note: any element that has an HTML class attribute is using className for
that property instead of class. Since class is a reserved word in Javascript, we
have to use className to define the class attribute of an HTML element.

In the above, we have a functional-based component called App. Every React
application has at least one component: the root component, named App in
App.js. The App component controls the view through the JSX template it
returns:

return (
<div className="App">

…
</div>

);

A component has to return a single React element. In our case, App returns a
single <div />. The element can be a representation of a native DOM
component, such as <div />, or another composite component that you've
defined yourself. We will dwell more on this in the next chapter.

The funny tag syntax returned by the component is not HTML but JSX. JSX
is a syntax extension to Javascript. We use it to describe what the UI should
be like. Like HTML, in JSX, an element ’ s type is specified with a tag. The
tag ’ s attributes represent the properties. Also, the element ’ s children can be
added between the opening and closing tags.

Components can either be functional based or class based. We will talk more
on this later, but as a starter, what we have in App is a functional-based
component as seen from its header function App().

We also have the package.json file and node_modules folder:

package.json is the node package configuration which lists the third-party
packages our project uses.

node_modules folder is created by Node.js and puts all third-party modules
listed in package.json in it.

1.5 Editing our first React Component
‘ create-react-app ’ created the first React functional-based component for us
in App.js. Now, we will convert our functional-based component to a class-
based component.

Open App.js and change it to the following:
import React, { Component } from 'react';

class App extends Component {
render() {

return (
<div>

<h1>
My First React App!
</h1>

</div>
);

}
}

export default App;

What we have above is a class-based component, as evident from the class
declaration. Similar to the functional-based component we saw earlier, the
class-based component also returns a JSX template but this time through its
render() method. In a React class-based component, implementing the
render() method is required. Like the return of a functional-based
component, render() should return a single React element.

Additionally, in a class-based component, we can define application logic to

interact with the view through properties and methods. For now, our root app
component class has no properties or methods.

When you run your app, you should see something like:

Now in App.js, try changing “ My First React App! ” to “ My Second React
App ” . Notice that the browser reloads automatically with the revised title.
Because React compiler is running in the ‘watch’ mode, it detects that there is
a file change and re-compiles the file. In the Chrome browser, the app gets
refreshed automatically so you don’t have to refresh the page every time your
code changes.

By now, you would probably have a question. So, should I use a functional-
based component or class-based one? I come to that in chapter twelve as
explaining them to you now would not be meaningful. What I aim to do first
is get you familiar first with class-based components. And later on, when you
understand class-based components better, we can then make a more
meaningful contrast with functional-based components and how React Hooks
fit into the whole picture.

As a precursor, this book largely focuses on React development through class
components except in the last chapter. I have written a separate book
(“ Beginning React with Hooks ” ,
https://www.amazon.com/dp/B088ZT9P36/) which brings you through React
development using function components.

If you have bought this book but prefer to journey in React development with
function components, don ’ t worry. Just drop me a mail at support@i-
ducate.com and I will give you a complimentary copy of “ Beginning React
with Hooks ” as a way of expressing thanks to you for supporting me.

Summary

mailto:support@i-ducate.com

In this chapter, we have been introduced to the core building blocks of React
apps which are components. We have also been introduced to the React
development experience which is creating a new React project with create-
react-app. create-react-app provides internal compilation which
automatically generates our app for us that we can view on the browser. It is
a great tool for developers, whether beginner or advanced. Keep an eye on its
changes in GitHub as more functionality is added to it. In the next chapter,
we will begin implementing a React app.

CHAPTER 2: CREATING AND USING

COMPONENTS
In the previous chapter, you learned about the core building blocks of React
apps, components. In this chapter, we will implement a custom class-based
component from scratch to have an idea of what it is like to build a React
app.

2.1 Creating our First Component
In VScode, open the project folder that you have created in chapter 1. We
first add a new file in the src folder and call it Products.js (fig. 2.1.1).

figure 2.1.1

Note the naming convention of the file; we capitalize the first letter of the
component Products followed by .js.

Type out the below code into Products.js:
import React, { Component } from 'react';

class Products extends Component {
render() {

return (
<div>

<h2>
Products

</h2>
</div>

);
}

}

export default Products;

Code Explanation

import React, { Component } from 'react' imports the Component class from ‘react’
library which we use to extend.

In the render method, we specify the JSX that will be inserted into the DOM
as HTML when the component’s view is rendered. Our current html markup
is:

<div>
<h2>

Products
</h2>

</div>

Note that components must return a single root element. If we have:
render() {

return (
<h2>

Products
</h2>
<h2>

Courses
</h2>

);
}

The above will throw an error. So, we typically add a <div> to contain all
internal elements like:

render() {
return (

<div>
<h2>

Products
</h2>
<h2>

Courses
</h2>

</div>
);

}

Lastly, export default Products makes this component available for other files
in our application to import it.

With these simple lines of code, we have just built our first React component!

2.2 Using our Created Component
Now, go back to App.js. Notice that the contents of App.js is very similar to
Products.js.

Remember that App component is the root of our application. It is the view
component that controls our entire app or page.

Now, import and add <Products /> to the template as shown below.
import React, { Component } from 'react';
import Products from './Products';

class App extends Component {
render() {

return (
<div>

<h1>My First React App!</h1>
<Products />

</div>
);

}
}

export default App;

Code Explanation

We have just referred to another component from a component. We can also
render Products many times:

render() {
return (

<div>
<h1>My First React App!</h1>
<Products />
<Products />
<Products />

</div>
);

}

Now save the file and go to your browser. You should see the Products
component markup displayed with the message:

Notice that we also have to first import our Products Component using
import Products from './Products';

For custom components that we have defined, we need to specify their path
in the file system. Since App component and Products Component are in the
same folder app, we use ‘./’ which means start searching from the current
folder followed by the name of the component, Products (without .js
extension).

<Products /> here acts as a custom tag which allows us to extend or control our
virtual DOM. In this way, we can design custom components that are not part
of standard JSX.

2.3 Embedding Expressions in JSX
You can embed Javascript expressions in JSX by wrapping it in curly braces.
For example, we can define functions, properties and render them in the
output. The below App component has a function formatName which takes in
a user object which holds firstName and lastName properties. We then call
formatName in render within the curly braces.
class App extends Component {

formatName(user){
return user.firstName + ' ' + user.lastName;

}

render() {
const user ={

firstName:'Greg',
lastName:'Lim'

};

return (
<div>

<h1>Hello, {this.formatName(user)}</h1>
</div>

);
}

}

If the value of the property in the user object changes, the view will be
automatically refreshed.

You can also use curly braces to embed a Javascript expression in an attribute
for example:

Displaying a List
We will illustrate using properties further by displaying a list of products in
Products. In Products.js, add the codes shown in bold below:
import React, { Component } from 'react';

class Products extends Component {

render() {
const products = ["Learning React","Pro React","Beginning React"];
const listProducts = products.map((product) =>

<li key={product.toString()}>{product}
);

return (
<div>

{listProducts}
</div>

);
}

}

export default Products;

Navigate to your browser and you should see the result in fig. 2.3.1

fig. 2.3.1
`

Code Explanation
const products = ["Learning React","Pro React","Beginning React"];

First, in render, we declare an array products in Products Component which
contains the names of the products that we are listing.

const listProducts = products.map((product) =>
<li key={product.toString()}>{product}

);

We next define an ES6 arrow function
(product) => <li key={product.toString()}>{product}

that returns an element for each product. We then pass in this function
into map which loops through each element, calls the function that returns an
 element for each product, and we are returned a new array of
elements which we assign to listProducts.

return (
<div>

{listProducts}
</div>

);

We include the entire listProducts array inside a element, and render it
to the DOM:

Note that we have provided a key attribute for our list items. A "key" is a
special string attribute you need to include when creating lists of elements. If
you don’t provide this attribute, you will still have your items listed but a
warning message will be displayed. Keys help React identify which items
have changed, are added, or are removed. Keys should ideally be strings that
uniquely identify a list item among its siblings. Most often, you would use
IDs from your data as keys. But in our case, we do not yet have an id. Thus
we use the product.toString(). You should always use keys as much as
possible because bugs creep into your code (especially when you do
operations like deleting, editing individual list items – you delete/edit the
wrong item!) when you do not use it.

Summary
You have learned a lot in this chapter. If you get stuck while following the
code or if you would like to get the sample code we have used in this chapter,
visit my GitHub repository at https://github.com/greglim81/react-chapter2 or
contact me at support@i-ducate.com.

mailto:support@i-ducate.com

In this chapter, we created our first component. We created a
ProductsComponent that retrieves product data from an array and later
renders that data on the page.

CHAPTER 3: BINDINGS, PROPS, STATE AND

EVENTS

In this chapter, we will explore displaying data by binding controls in a JSX
template to properties of a React component, how to apply css classes on
styles dynamically, how to use the component state and how to handle events
raised from DOM elements.

3.1 CSS Class Binding
In the following code, we show a button in our view using react-bootstrap to
make our button look more professional. React-Bootstrap (https://react-
bootstrap.github.io) is a library of reusable front-end components that contain
JSX based templates to help build user interface components (like forms,
buttons, icons) for web applications.

Installing React-Bootstrap

In the Terminal, run:
npm install react-bootstrap bootstrap

Next, in the existing project from chapter two, we need to reference
bootstrap.css in index.html. Go to ‘react-bootstrap.github.io’, under ‘Getting
Started’, ‘CSS’, copy the stylesheet link:

<!—- it should look something like the below, but please copy the latest link from the react bootstrap
documentation -->

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/latest/css/bootstrap.min.css">

and add it to index.html in your project’s public folder to get the latest styles.

To check if we have installed react-bootstrap correctly, we add a button into
our App component by adding the lines in bold:
import React, { Component } from 'react';
import Products from './Products';
import { Button } from 'react-bootstrap';

class App extends Component {

render() {
return (

<div>
<Products />
<Button>Default</Button>

</div>
);

}
}

export default App;

If you have successfully linked your react-bootstrap class, you should get
your button displayed like in fig. 3.1.1.

fig. 3.1.1

There are times when we want to use different css classes on an element. For
example, if we add the ‘ danger ’ button style as shown below:
<Button variant="danger">Default</Button>

we get the below button style.

And if I want to disable the button by applying the disabled class, I can do
the following
<Button variant="primary" disabled>Default</Button>

More information of styles of button and other components are available at

the React Bootstrap site under ‘ Components ’ .

Disabling Button on Condition

Now, suppose I want to disable the button based on some condition, we can
do the below:

render() {
const isValid = true;

return (
<div>

<Products />
<Button variant="primary" disabled={!isValid}>Default</Button>

</div>
);

}

That is, when isValid = false the disabled css class will be applied, making
the button unclickable. If isValid = true the disabled css class will not be
applied, making the button clickable.

3.2 Props

We can pass data into a component by passing in a single object called
‘props’. The ‘props’ object contains JSX attributes. For example, suppose we
want to display a list of products with its rating. We will need to assign the
rating value to our rating component beforehand. We can do something like:
<Rating rating="4"/> to display a rating of 4 stars.

‘props’ will contain the value of 4 assigned to the rating attribute. To access
‘props’ in our Rating component, we use props.rating.

For example, in Rating.js (our Rating component), the below code renders
the rating value on the page.
import React, { Component } from 'react';

class Rating extends Component {

render() {
return (

<div>
<h1>Rating: {this.props.rating}</h1>

</div>
);

}
}

export default Rating;

In App.js, add in the codes below into render():
render() {

return (
<div>

<Rating rating="1"/>
<Rating rating="2"/>
<Rating rating="3"/>
<Rating rating="4"/>
<Rating rating="5"/>

</div>
);

}

Remember to import Rating by adding the following in App.js:
import Rating from './Rating';

If you run your app now, it should display something like:

To recap, we call render() in App.js with <Rating rating="1"/> . React calls the
Rating component with { rating: ‘1’ } as the props. Our Rating component
returns a <h1>Rating: 1</h1> element as the result and React DOM updates the
DOM.

In this example, our props object contains only one attribute. But it can
contain multiple and even complex objects as attribute(s). We will illustrate
this later in the book.

Props are Read-Only
Note that when we access props in our components, we must never modify
them. Our functions must always be ‘pure’ – which means that we do not
attempt to change our inputs and must always return the same result for the
same inputs. In other words, props are read-only. For example, the below
function is impure and not allowed:

render() {
return (

<div>
<h1>Rating: {this.props.rating++}</h1>

</div>
);

}

We can use React flexibly but it has a single strict rule: that all React
components must act like pure functions concerning their props. So how do
we make our application UI dynamic and change over time? Later on, we will
introduce the concept of ‘ state ’ , where we use it to change our output over
time in response to user actions or network responses without violating this
rule.

But first, we will improve the look of our rating component by showing
rating stars like what we see in Amazon.com instead of showing the rating
value numerically. A user can click select from a rating of one star to five
stars. We will implement this as a component and reuse it in many places.
For now, don’t worry about calling a server or any other logic. We just want
to implement the UI first.

3.3 Improving the Look
To show rating stars instead of just number values, we will use the React
Icons library from https://react-icons.github.io/react-icons/ which provides
popular icons in our React project. Install react icons by running:
npm install react-icons --save

We will be using the IoIosStarOutline and IoIosStar ionicons:
(https://react-icons.github.io/react-icons/icons?name=io).

To include them in our React project, add the below codes in bold into
Rating component:
import React, { Component } from 'react';
import { IoIosStar, IoIosStarOutline } from 'react-icons/io'

class Rating extends Component {

render() {
return (

<div>
<h1>Rating: {this.props.rating}</h1>
{this.props.rating >= 1 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.props.rating >= 2 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.props.rating >= 3 ? (

<IoIosStar />

https://react-icons.github.io/react-icons/

) : (
<IoIosStarOutline />

)}
{this.props.rating >= 4 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.props.rating >= 5 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}

</div>
);

}
}

export default Rating;

Code Explanation

We first import the IosIosStar and IoIosStarOutline icons from ‘react-
icons/io’ with
import { IoIosStar, IoIosStarOutline } from 'react-icons/io'

In the render method, we add the IosIosStar and IoIosStarOutline icons with:
{this.props.rating >= 1 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}

Conditional Rendering

We conditionally render an IosIosStar (filled star) if the this.props.rating is
>= 1. Else, render IosIosStarOutline (empty star). We will dwell more on the
If-Else conditional code in chapter 5.

The above code is for the first star. The remaining similar repetitions are for
the four remaining stars. However, note the change in value of each condition
depending on which star it is. For example, the second star’s condition should
be

{this.props.rating >= 2 ? (
<IoIosStar />

) : (
<IoIosStarOutline />

)}

The second star should be empty if the rating is less than two. It should be
filled if the rating is more than or equal to two. The same goes for the third,
fourth and fifth star.

Running your App

When we run our app, we get the icons displayed:

3.4 Adding Local State to a Component
Now, suppose we want our user to be able to change the rating by clicking on
the specified star. How do we make our rating component render in response
to a user click? And considering that we cannot modify this.props.rating?

This is where we have to add ‘ state ’ to our Rating component. State is
similar to props, but it is private and fully controlled by the component. State
manages data that will change within a component. Whenever state changes,
the UI is re-rendered to reflect those changes. We often refer to this as the
component or local state. To add local state to our component, we first add a
class constructor that assigns the initial state:
class Rating extends Component {

constructor(props){
super(props);
this.state = {rating: this.props.rating};

}

…

Note how props is passed to the base constructor with super(props). We
should always call the base constructor with props. props in turn are sent to
the superclass by invoking super(). The superclass is React.Component.
Invoking super initializes the component instance and React.Component
decorates that instance with functionality that includes state management.
After invoking super, we can initialize our component ’ s state variables.

Just like props, realize that this.state is a single object that can contain one or
more attributes. We initialize our initial state in the constructor. Our current
state is an object containing a single attribute rating which is assigned the
value from this.props.rating. You can also initialize rating in state to 0 by
default with this.state = {rating: 0};

Next, replace this.props.rating with this.state.rating in the render() method:
render() {

return (
<div>

<h1>Rating: {this.state.rating}</h1>
{this.state.rating >= 1 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.state.rating >= 2 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.state.rating >= 3 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.state.rating >= 4 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}
{this.state.rating >= 5 ? (

<IoIosStar />
) : (

<IoIosStarOutline />
)}

</div>
);

}

If you run your app now, it should display the Rating component just as the
same as before. The purpose of why we use state.rating instead of
props.rating will become more apparent in the following sections.

3.5 Handling Events with States
Next, we want to assign a rating depending on which star the user has
clicked. To do so, our component needs to handle the click event. Handling
events with React components is very similar to handling events on DOM
elements. However, with JSX we pass a function as the event handler, rather
than a string. For example, to make our rating component handle user clicks,
we add the following in the render method:

render() {
return (

<div>
<h1>Rating: {this.state.rating}</h1>
{this.state.rating >= 1 ? (

<IoIosStar onClick={this.handleClick.bind(this,1)}/>
) : (

<IoIosStarOutline onClick={this.handleClick.bind(this,1)}/>
)}
{this.state.rating >= 2 ? (

<IoIosStar onClick={this.handleClick.bind(this,2)}/>
) : (

<IoIosStarOutline onClick={this.handleClick.bind(this,2)}/>
)}
{this.state.rating >= 3 ? (

<IoIosStar onClick={this.handleClick.bind(this,3)}/>
) : (

<IoIosStarOutline onClick={this.handleClick.bind(this,3)}/>
)}
{this.state.rating >= 4 ? (

<IoIosStar onClick={this.handleClick.bind(this,4)}/>
) : (

<IoIosStarOutline onClick={this.handleClick.bind(this,4)}/>
)}

{this.state.rating >= 5 ? (
<IoIosStar onClick={this.handleClick.bind(this,5)}/>

) : (
<IoIosStarOutline onClick={this.handleClick.bind(this,5)}/>

)}
</div>

);
}

In each star, we pass in the handleClick function as the event handler with
ratingValue attribute to the onClick event. For example, we have onClick=
{this.handleClick.bind(this,1)} to assign a rating of one if a user clicks on this star.
We then change the value of the argument to handleClick function depending
on which star it is. The second star’s handleClick should be onClick=
{this.handleClick.bind(this,2)} . So, when a user clicks on the second star, the
handleClick method is called with property rating of value two. When a user
clicks on the third star, the handleClick method is called with property rating
of value three and so on.

Next, we also need to bind the handleClick function to our component with
this.handleClick.bind(this,<value>) as class methods in Javascript are not bound by
default.

We then define the handleClick function:
handleClick(ratingValue){

this.setState({rating:ratingValue});
}

Note that in handleClick, we CANNOT modify our state directly like
this.state.rating = ratingValue. Whenever we want to modify our state, we
must use the setState method which we automatically calls the render()
method which re-renders our component thus showing the updated value on
to the view.

Running your App

When you run your app now, you should be able to see your ratings and also
adjust their values by clicking on the specified star (figure 3.5.1).

fig. 3.5.1

Note that we have five different rating components each having their own
local state. Each updates independently. Each rating component does not
have access to another rating component’s state. But each rating component
may choose to pass its state down as props to its own child components in a
top-down fashion.

Summary

In this chapter, we learned about CSS class binding, props, adding local state
and handling events. In the next chapter, we will see how to put multiple
components together in an application.

Visit my GitHub repository at https://github.com/greglim81/react-chapter3 if
you have not already have the full source code for this chapter or contact me
at support@i-ducate.com if you encounter any errors with your code.

https://github.com/greglim81/react-chapter3
mailto:support@i-ducate.com

CHAPTER 4: WORKING WITH COMPONENTS

In this chapter, we will learn more about using components, how to reuse
them and put them together in an application. Execute the codes in the
following sections in your existing project from chapter three.

4.1 Styles
On top of the components provided by React-bootstrap, we can further
modify them with our own css styles required by our component. These styles
are scoped only to your component. They won’t effect to the outer DOM or
other components.

To illustrate, suppose we want our filled stars to be orange, in Rating.js we
add the following in bold after export default Rating:

…
export default Rating;

const styles={
starStyle:{

color: 'orange'
}

}

We have created a new object under the Rating component called styles and
in it, we provide the styling specifications. If required, you can further
specify other styling properties like height, backgroundColor, fontSize etc.

To apply this style, add the below style attribute in the <div> containing the
rating component.

render() {
return (

<div style={styles.starStyle}>
<h1>Rating: {this.state.rating}</h1>

…

When we run our application, we will see our filled stars with the orange css
applied to it (fig. 4.1.1).

figure. 4.1.1

4.2 Example Application
We will reuse the rating component that we have made and implement a
product listing like in figure 4.2.1.

fig. 4.2.1

This is like the list of products on Amazon. For each product, we have an
image, the product name, the product release date, the rating component and
the number of ratings it has.

In src, create a new component file Product.js that contains the Product
Component. This component will be used to render one product. Fill in the
file with the below code.
import React, { Component } from 'react';

class Product extends Component {

constructor(props){
super(props);

}

render() {

return (
);

}
}

export default Product;

Now, how do we get our template to render each product listing like in figure
4.2.1? We use the media object in react-bootstrap. Go to react-
bootstrap.github.io, in ‘Layout’, click on ‘Media’ (fig. 4.2.2) and copy the
JSX markup there into the render method of Product Component.

fig. 4.2.2

Next in render, we use props to assign values of our product into our JSX.
Type in the below codes in bold into the template.

render() {
return (

<div>
<Media>

<img
width={64}
height={64}
className="mr-3"
src={this.props.data.imageUrl}
alt="Image"

/>
<Media.Body>

<h5>{this.props.data.productName}</h5>
{ this.props.data.releasedDate }

<Rating
rating={this.props.data.rating} numOfReviews=

{this.props.data.numOfReviews}
/>

<p>{this.props.data.description}</p>
</Media.Body>

</Media>
</div>

);
}

With the above code, our product component is expecting a props data object
with the fields:
imageUrl, productName, releasedDate and description.

We have also added our rating component that expects input rating and
number of reviews.

<Rating
rating={this.props.data.rating} numOfReviews=
{this.props.data.numOfReviews}

/>

Our rating component currently only has rating-value as input. Add
{this.props.numOfReviews} at the end of Rating.js to display the number of reviews
beside the rating stars.

Lastly in Product.js, make sure that you have imported Rating and Media:
import Rating from './Rating';
import { Media } from 'react-bootstrap';

Products.js

Next in Products.js, add a method getProducts that is responsible for
returning a list of products. Type in the below code (or copy it from my
GitHub repository https://github.com/greglim81/react-chapter4) into
Products.js.

getProducts() {
return [
{

imageUrl: "http://loremflickr.com/150/150?random=1",
productName: "Product 1",
releasedDate: "May 31, 2016",
description: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor, tellus

laoreet venenatis facilisis, enim ex faucibus nulla, id rutrum ligula purus sit amet mauris. ",
rating: 4,
numOfReviews: 2

},
{

imageUrl: "http://loremflickr.com/150/150?random=2",
productName: "Product 2",
releasedDate: "October 31, 2016",
description: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor, tellus

laoreet venenatis facilisis, enim ex faucibus nulla, id rutrum ligula purus sit amet mauris. ",
rating: 2,
numOfReviews: 12

},
{

imageUrl: "http://loremflickr.com/150/150?random=3",
productName: "Product 3",
releasedDate: "July 30, 2016",
description: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor, tellus

laoreet venenatis facilisis, enim ex faucibus nulla, id rutrum ligula purus sit amet mauris. ",
rating: 5,
numOfReviews: 2

}];
}

Notice that in our class, we currently hardcode an array of product objects.
Later on, we will explore how to receive data from a server.

For imageUrl, we use http://loremflickr.com/150/150?random=1 to render a
random image 150 pixels by 150 pixels. For multiple product images, we
change the query string parameter random=2, 3,4 and so on to get a different
random image.

The getProducts method will be called in our Products Component
constructor. We return the results from getProducts to a products variable.
Add the codes below in bold into Products.js.

Products.js
import React, { Component } from 'react';
import Product from './Product';

class Products extends Component {

products;

constructor(props){
super(props);
this.products = this.getProducts();

}

getProducts() {
return […]

http://loremflickr.com/150/150?random=1

render() {
const listProducts = this.products.map((product) =>

<Product key={product.productName} data={product} />
);

return (
<div>

{listProducts}
</div>

);
}

}

export default Products;

The code on render() is similar to the one in chapter three where we loop
through the names in products array to list them. This time however, our
element is not just simple strings but an object which itself contains several
Product attributes.

The function we define now returns a <Product> component with the product
data object as input for each product. Each data object input provides
Product component with values from properties imageUrl, productName,
releasedDate, description, rating and numOfReviews.

We pass in this function into map which loops through each element, calls
the function that returns a <Product /> component for each product, and we
are returned a new array of Product components which we assign to
listProducts.

Note that we have provided productName as key attribute for our list items.
Remember that "key" is a special string attribute which help React identify
which items have changed, are added, or are removed. Because productName
might not be unique, I will leave it to you as an exercise on how you can use
Product id which uniquely identifies a product to be the key instead.

Lastly in App.js, make sure you render your Products component:
import React from 'react';
import Products from './Products';

function App() {
return (

<div className="App">
<Products />

</div>

);
}

export default App;

Save all your files and you should have your application running fine like in
figure 4.2.3.

figure 4.2.3

Summary
In this chapter, we illustrate how to modify css styles taken from react-
bootstrap and reusing components to put them together in our example
Product Listing application.

Contact me at support@i-ducate.com if you encounter any issues or visit my
GitHub repository at https://github.com/greglim81/react-chapter4 for the full
source code of this chapter.

mailto:support@i-ducate.com

CHAPTER 5: CONDITIONAL RENDERING

In this chapter, we will explore functionality to give us more control in
rendering HTML via JSX.

5.1 Inline If with && Operator
Suppose you want to show or hide part of a view depending on some
condition. For example, we have earlier displayed our list of products. But if
there are no products to display, we want to display a message like “No
products to display” on the page. To do so, in Products.js of the existing
project from chapter four, add the codes in bold:

render() {
const listProducts = this.products.map((product) =>

<Product key={product.productName} data={product} />
);

return (
<div>

{listProducts.length > 0 &&
{listProducts}

}
{listProducts.length == 0 &&

No Products to display
}

</div>
);

}

Now when we rerun our app, we should see the products displayed as same
as before. But if we comment out our hard-coded data in Products.js and
return an empty array instead, we should get the following message.

No Products to display

Code Explanation
return (

{listProducts.length > 0 &&
{listProducts}

}

Remember that we can embed any expression in JSX by wrapping them in
curly braces. Thus, we can use the Javascript logical && operator to
conditionally show listProducts if listProducts.length > 0. If the condition is
true, i.e. listProducts.length > 0 is true, the element right after && which is
{listProducts} will appear in the output. If it is false, React will ignore
and skip it.

The following expression however evaluates to false and therefore, we don’t
display the message.

{listProducts.length == 0 &&
No Products to display

}

When we return an empty array however, “products.length > 0” evaluates to false
and we do not render the list of products. Instead we display the “No products
to display message”.

Inline If-Else with Conditional Operator
The above code can also be implemented with if/else by using the Javascript
conditional operator condition ? true : false. We have actually previously
used this to conditionally render either a filled star or empty one.

render() {
const listProducts = this.products.map((product) =>

<Product key={product.productName} data={product} />
);

return (
<div>

{listProducts.length > 0 ? (
{listProducts}

) : (
No Products to display

)}
</div>

);
}

Code Explanation
{listProducts.length > 0 ? (

{listProducts}
) : (

No Products to display

)}

The above code is saying, "If listProducts length is > 0, then show
{listProducts} . Otherwise (else) show what follows ‘:’ which is No
Products to display .

5.2 props.children
Sometimes, we need to insert content into our component from the outside.
For example, we want to implement a component that wraps a bootstrap
jumbotron. A bootstrap jumbotron (fig. 5.2.1) as defined on getbootstrap.com
is “A lightweight, flexible component that can optionally extend the entire
viewport to showcase key content on your site.”

fig. 5.2.1

Here is an implementation of the bootstrap jumbotron component.
import React, { Component } from 'react';

import { Jumbotron, Button } from 'react-bootstrap';

class JumboTronComponent extends Component {

render() {
return (

<div>
<Jumbotron>

<h1>Hello, world!</h1>
<p>This is a simple hero unit, a simple jumbotron-style component for calling extra

attention to featured content or information.</p>
<p><Button variant="primary">Learn more</Button></p>

</Jumbotron>
</div>

);
}

}

export default JumboTronComponent;

The markup above can be obtained from:
https://react-bootstrap.github.io/components.html#jumbotron.

The jumbotron component is called in App.js using,
import React, { Component } from 'react';
import JumboTronComponent from './JumboTronComponent';

class App extends Component {
render() {

return (
<div>

<JumboTronComponent />
</div>

);
}

}

export default App;

To supply content to the jumbotron component, we can use attributes like:
<JumboTronComponent body=’…’/>

This is not ideal however. For we probably want to write a lengthier html
markup here like,
<JumboTronComponent>

This is a long sentence, and I want to insert content into the
jumbotron component from the outside.

</JumboTronComponent>

That is to say, we want to insert content into the jumbotron component from
the outside. To do so, we use this.props.children as shown below:
import React, { Component } from 'react';
import { Jumbotron, Button } from 'react-bootstrap';

class JumboTronComponent extends Component {

constructor(props){
super(props);

}

render() {
return (

<div>
<Jumbotron>

<h1>Hello, world!</h1>

<p>{this.props.children}</p>
<p><Button variant="primary">Learn more</Button></p>

</Jumbotron>
</div>

);
}

}

export default JumboTronComponent;

If there is a string in between an opening and closing tag, the string is passed
as a special prop: props.children. So, in the code above, this.props.children
will be the string between <JumboTronComponent> and
</JumboTronComponent> as shown in bold below:
<JumboTronComponent>

This is a long sentence, and I want to insert content into the
jumbotron component from the outside.

</JumboTronComponent>

Summary

In this chapter, we introduced the inline if ‘&&’ operator that gives us more
conditional control in rendering our JSX. We have also learned about
inserting content into components from the outside using props.children.

Contact me at support@i-ducate.com if you encounter any issues or visit my
GitHub repository at https://github.com/greglim81/react-chapter5 for the
source code of Product.js and JumboTronComponent.js.

mailto:support@i-ducate.com

CHAPTER 6: BUILDING FORMS USING

FORMIK
In this chapter, we look at how to implement forms in React using an external
library called Formik. Why use an external library to create Forms you might
ask? You can certainly create Forms in React without an external library but
as requirements for the Form increase for example, validation of form fields,
you will realize (annoyingly) that one has to create a lot of code to get values
in and out of the form state, validation and showing of error messages and
handling form submissions. This leads to unorganized code and unnecessary
complexity. You can see an example of such a form in
https://github.com/greglim81/react-chapter6/blob/master/src/old-
UserForm.js. This is actually the old form code for this chapter.

Using Formik (https://jaredpalmer.com/formik/), it helps us with these
annoying parts and keeps code organized. Install Formik with the following
command:
npm install formik --save

6.1 Create an Initial Form Template
First, either in a new React project or in your existing project from chapter 5,
create a new file UserForm.js and copy and paste the form template from the
Formik Overview site under “Reducing boilerplate”
(https://jaredpalmer.com/formik/docs/overview).

https://github.com/greglim81/react-chapter6/blob/master/src/old-UserForm.js

Your UserForm.js should look like the below (note that I have modified it
slightly for ES6):
import React, { Component } from 'react';
import { Formik, Form, Field, ErrorMessage } from 'formik';

class UserForm extends Component {
constructor(props){

super(props);
}

render(){
return(

<div>
<h1>Any place in your app!</h1>
<Formik

initialValues={{ email: '', password: '' }}
validate={values => {

let errors = {};
if (!values.email) {

errors.email = 'Required';
} else if (

!/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$/i.test(values.email)
) {

errors.email = 'Invalid email address';
}
return errors;

}}
onSubmit={(values, { setSubmitting }) => {

setTimeout(() => {

alert(JSON.stringify(values, null, 2));
setSubmitting(false);

}, 400);
}}

>
{({ isSubmitting }) => (

<Form>
<Field type="email" name="email" />
<ErrorMessage name="email" component="div" />
<Field type="password" name="password" />
<ErrorMessage name="password" component="div" />
<button type="submit" disabled={isSubmitting}>

Submit
</button>

</Form>
)}

</Formik>
</div>

)
}

}

export default UserForm;

If you run your code (do remember to initialize the UserForm component in
App.js), you should have the form appearing. Try entering values into the
form and when you click submit, there will be a popup with the values in a
JSON object.

Code Explanation
import React, { Component } from 'react';
import { Formik, Form, Field, ErrorMessage } from 'formik';

First, we import the necessary Formik components that will be used.
<Formik

initialValues={{ email: '', password: '' }}

Next, we have the <Formik /> component with its initialValues attribute.

initialValues as its name suggest populates the initial field values of the form.
It also makes these values available to the render method as values i.e.
values.email and values.password.

validate={values => {
let errors = {};
if (!values.email) {

errors.email = 'Required';
} else if (

!/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$/i.test(values.email)
) {

errors.email = 'Invalid email address';
}
return errors;

}}

We then have the validate function to validate the form’s values. We first
initialize an empty errors object to store the error message(s). We first check
if the email field is empty using if (!values.email). If so, assign errors.email to be
‘Required’. Next, we check if the email is a valid email address using the
expression: if (!/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]
{2,}$/i.test(values.email)).

onSubmit={(values, { setSubmitting }) => {
setTimeout(() => {

alert(JSON.stringify(values, null, 2));
setSubmitting(false);

}, 400);
}}

>

We then have our onSubmit form submission handler. We pass in the form’s
values and a promise which shows an alert box with the submitted form
values in a JSON object.

{({ isSubmitting }) => (
<Form>

<Field type="email" name="email" />
<ErrorMessage name="email" component="div" />
<Field type="password" name="password" />
<ErrorMessage name="password" component="div" />
<button type="submit" disabled={isSubmitting}>

Submit
</button>

</Form>
)}

The body of the Form is created with the <Form /> component which is a
small wrapper around the HTML <form> element. In the <Form /> we have
the <Field /> component which hook up inputs to Formik. It uses the name
attribute to match up with the Formik state (i.e. values.email,
values.password). <Field /> defaults to an HTML <input /> element.

Below each <Field />, we have an <ErrorMessage /> component.
<ErrorMessage /> renders the error message of a given field that has been
visited. It is important that a field is visited first before we show any errors as
we should avoid showing errors prematurely before the user has had a chance
to edit the value, for example when the form is freshly loaded.

When you run your form, try placing your cursor in the email field and then
moving away from it. You will see the validation error message ‘Required’
appearing.

Likewise, when you fill in an invalid email address, the validation error
message ‘invalid email address’ appears.

We can easily include other custom validation like email, password minimum
length. We will implement this in the next section.

6.2 Adding more Custom Validation
To add a custom validation to check for email and password minimum
length, add the below codes in bold:

…

<Formik
initialValues={{ email: '', password: '' }}
validate={values => {

let errors = {};
if (!values.email) {

errors.email = 'Required';
} else if (

!/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$/i.test(values.email)
) {

errors.email = 'Invalid email address';
}
else if (values.email.length < 10) {

errors.email = 'Email address too short';
}

if (!values.password) {
errors.password = 'Required';

}
else if (values.password.length < 8) {

errors.password = 'Password too short';
}
return errors;

}}
…

Code Explanation
else if (values.email.length < 10) {

errors.email = 'Email address too short';
}

Here, we check if the email length is less than 10, following which we assign
errors.email with the appropriate error message. We do a similar validation
for the password field with the below code:

if (!values.password) {
errors.password = 'Required';

}
else if (values.password.length < 8) {

errors.password = 'Password too short';
}

6.3 Formatting Validation Error Messages

Our error messages are currently however not very prominent.

It would be better if we change the error messages’ font color to red and to
bold it. We do so by adding a span tag to it:

{({ isSubmitting }) => (
<Form>

<Field type="email" name="email" />

<ErrorMessage name="email" component="div" />

<Field type="password" name="password" />

<ErrorMessage name="password" component="div" />

<button type="submit" disabled={isSubmitting}>

Submit
</button>

</Form>
)}

Now our error messages appear more prominently:

Below lists the complete code for UserForm.js which is also available in my
React GitHub repository (https://github.com/greglim81/react-chapter6).

import React, { Component } from 'react';
import { Formik, Form, Field, ErrorMessage } from 'formik';

class UserForm extends Component {
constructor(props){

super(props);
}

render(){
return(

<div>
<h1>Any place in your app!</h1>
<Formik

initialValues={{ email: '', password: '' }}
validate={values => {

let errors = {};
if (!values.email) {

errors.email = 'Required';
} else if (

!/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$/i.test(values.email)
) {

errors.email = 'Invalid email address';
}
else if (values.email.length < 10) {

errors.email = 'Email address too short';
}

if (!values.password) {
errors.password = 'Required';

}
else if (values.password.length < 8) {

errors.password = 'Password too short';
}
return errors;

}}
onSubmit={(values, { setSubmitting }) => {

setTimeout(() => {
alert(JSON.stringify(values, null, 2));
setSubmitting(false);

}, 400);
}}

>
{({ isSubmitting }) => (

<Form>
<Field type="email" name="email" />

<ErrorMessage name="email" component="div" />

<Field type="password" name="password" />

<ErrorMessage name="password" component="div" />

<button type="submit" disabled={isSubmitting}>

Submit
</button>

</Form>
)}

</Formik>
</div>

)
}

}

export default UserForm;

Summary

In this chapter, we learned how to create a form using the Formik library. We
learned how to handle form inputs, show specific form field validation errors
and perform form submission.

Now after submitting a form, we need to persist the data by calling the API
endpoint of the server. We will begin to explore how to communicate with
the server in the next chapter.

CHAPTER 7: GETTING DATA FROM

RESTFUL APIS WITH AXIOS

In this chapter, we will see how to call backend services to get data through
RESTful APIs with the Axios library.

7.1 GitHub RESTful API
Building RESTful APIs is beyond the scope of React because React is a
client-side technology whereas building RESTful APIs require server-side
technology like NodeJS, ASP.NET, Ruby on Rails and so on. (Later on in
chapter 9, we will introduce Firebase, which provides us with a simple way
for us to create and store server-side data that we can utilize to build a fully
functioning React application!)

We will illustrate by connecting to the GitHub RESTful API to retrieve and
manage GitHub content. You can know more about the GitHub API at
https://developer.github.com/v3/

But as a quick introduction, we can get GitHub users data with the following
url,
https://api.github.com/search/users?q=<search term>

We simply specify our search term in the url to get GitHub data for user with
name matching our search term. An example is shown below with search
term greg .
https://api.github.com/search/users?q=greg

When we make a call to this url, we will get the following json objects as a
result (fig. 7.1.1).

https://developer.github.com/v3/

fig. 7.1.1

7.2 Getting Data
To get data using a RESTful API, we are going to use the Axios library.
Axios is a promise-based http client for the browser and Node.js. We use it to
make ajax calls to the server.

Axios provides the get() method for getting a resource, post() for creating it,
put() for updating it, delete() for delete and head() for getting metadata
regarding a resource. We will illustrate using Axios to get data from a
RESTful API in the following code example.

To begin, either create a new React project or in your existing project from
chapter 6, in src folder, create a new file GitHub.js with the below code.
import React, { Component } from 'react';
import axios from 'axios'; // npm install axios

class GitHub extends Component {

constructor(){
super();
this.getGitHubData('greg');

}

getGitHubData(_searchTerm){
axios.get("https://api.github.com/search/users?q="+_searchTerm)

.then(res => {
console.log(res.data.items);

});
}

render() {
return (

<div>
</div>

);
}

}
export default GitHub;

getGitHubData is a method that will return GitHub data from our API
endpoint. To call our API endpoint, we need to use the axios library. First,
install axios by executing the following in Terminal:
npm install axios

Then in GitHub.js, import it using
import axios from 'axios';

In the constructor, we call the getGitHubData method with argument ‘greg’.
The getGitHubData method returns a Promise which we need to subscribe to.

getGitHubData(_searchTerm){
axios.get("https://api.github.com/search/users?q="+_searchTerm)

.then(res => {
console.log(res.data.items);

});
}

Note: If you are unfamiliar with promises, a promise allows us to make sense

out of asynchronous behavior. Promises provide handlers with an
asynchronous action's eventual success value. Initially, the promise is
pending, and then it can either be fulfilled with a value or be rejected with an
error reason. When either of these options happens, the associated handlers
queued up by a promise's then method are called. This lets asynchronous
methods return values like synchronous methods instead of immediately
returning the final value. The asynchronous method returns a promise to
supply the value at some point in the future.

In getGitHubData, we use the get() method of axios and give the url of our
API endpoint. We have a search term provided by the user from an input
which we will implement later. The return type of get() is an promise. We
subscribe to this promise with then so that when an ajax call is completed, the
response is fed to the Promise and then pushed to the component.

We then pass in our callback function res => console.log(res.data.items). Note that
we have to access data.items property to get the items array direct as that is
the json structure of the GitHub response. So when our ajax call is completed,
we print the list of items returned which is the GitHub users search results.

Running our App

Before we run our app, remember that we have to import and call our GitHub
component in App.js.
import React, { Component } from 'react';
import GitHub from './GitHub';

class App extends Component {

render() {
return (

<div>
<GitHub />

</div>
);

}
}

export default App;

Now run your app in Chrome. Go to ‘ View ’ , ‘ Developer ’ , ‘ Developer
Tools ’ . Under console, you can see the following result from the console

(fig. 7.2.1). The

figure 7.2.1

Our requested json object is a single object containing an items array of size
30 with each item representing the data of a GitHub user.

Each user object has properties avatar_url, html_url, login, score, and so on
(fig. 7.2.2).

figure 7.2.2

7.3 Life Cycle componentDidMount
Even though our code currently works, it doesn’t follow best practices. We
are currently calling the server in the constructor of the app component. As a
best practice, constructors should be lightweight and should not contain any
costly operations making it easier to test and debug. So where should we

move our code to?

Components have a lifecycle which is managed by React. There are lifecycle
hooks which we can tap into when a component is mounted or updated.
These methods are invoked either before or after the component renders the
UI. To do this, we need to implement one or more of the following interfaces
in the component.

constructor(props)
render()
componentDidMount()

Note: The constructor is not technically a lifecycle method, but we include it
as it is called when a component first initializes. The constructor is also
where we should initialize the state since it is always the first function
invoked when a component is mounted. For completeness sake, I also
mention the componentWillMount() life cycle method which is called before
any HTML element is rendered. But constructor already allows to execute
code before render. Therefore, you can safely ignore the
componentWillMount() life cycle method.

Each of the interfaces has a method that we can implement in our component.
When the right moment arrives, React will call these methods. In the
following, we will implement the componentDidMount() interface which is
notified after the first render of the component. This is where ajax requests
and DOM or state updates should occur.

In terms of lifecycle, componentDidMount() is called after the constructor. So
in the constructor, we do lightweight and basic initialization and if we need to
call the server, we do it in componentDidMount. So we shift the code to call
GitHub from the constructor to componentDidMount as shown below.
class GitHub extends Component {

constructor(){
super();

}

componentDidMount(){
this.getGitHubData('greg');

}

getGitHubData(_searchTerm){
axios.get("https://api.github.com/search/users?q="+_searchTerm)

.then(res => {
console.log(res.data.items);

});
}

7.4 Showing a Loader Icon
While getting content from a server, it is often useful to show a loading icon
to the user (fig. 7.4.1).

figure 7.4.1

To do so, in app component, create a state variable called isLoading and set it
to true like in the below code.
class GitHub extends Component {

constructor(){
super();
this.state = {

isLoading : true
};

}

isLoading will be true when loading of results from server is still going on.
We set it to true in the beginning since we call getGitHubData in
componentDidMount.

Next, in the then() method, set isLoading to false because at this point, we get
the results from the server and loading is finished.

getGitHubData(_searchTerm){
axios.get("https://api.github.com/search/users?q="+_searchTerm)

.then(res => {
this.setState({

isLoading : false,
})
console.log(res.data.items);

});
}

Lastly, in render(), add a div that shows the loading icon. We use the if @@

conditional to make the div visible only when the component is loading.
render() {
return (

<div>
{ this.state.isLoading &&

<h4>Getting data...</h4>
}

</div>
);

If you load your app in the browser, you should see the “Getting data”
message being displayed for a short moment before data from the server is
loaded.

We will now replace the “Getting data” message with the loading icon. To
get the loading icon, go to https://www.npmjs.com/package/react-loading.
React-loading is a library that provides many easy to use animations for
React projects (fig. 7.4.2).

figure 7.4.2

Install the react-loading library in the Terminal with the code:
npm install react-loading

Back in GitHub.js, import ReactLoading with the statement:
import ReactLoading from 'react-loading';

To add the loading icon, replace the “Getting data…” message with the
following code in bold:

<div>
{ this.state.isLoading &&

<ReactLoading type="spinningBubbles" color="#444" />
}

</div>

We use the <ReactLoading> tag and specify spinningBubbles as the type to
render the spinning bubbles animation. You can try out other kinds of
animations as specified in the react-loading documentation.

7.5 Implementing a GitHub Results Display Page
We will now implement a page which displays our GitHub user data nicely
like in figure 7.5.1.

figure 7.5.1

First, we need to declare and initialize an empty data array in our state. We
declare it in our constructor as data : [] as shown below.

constructor(){
super();
this.state = {

data: [],
isLoading : true

};
}

We then subscribe to our promise returned from getGitHubData and assign
the returned result to data array. Note once again that we assign it with
data.items as this is the users item array structured in the json response.

getGitHubData(_searchTerm){
axios.get("https://api.github.com/search/users?q="+_searchTerm)

.then(res => {
this.setState({

isLoading : false,
data: res.data.items

})
});

}

Next, we want to render our GitHub user data nicely. In render(), we use the
react-bootstrap Media Object component from https://react-
bootstrap.github.io/layout/media/ as what we have done previously.

We will slightly modify the markup from getbootstrap and include it in our
component as shown below:

render() {
const listUsers = this.state.data.map((user) =>

<Media key={user.id}>

<img
width={64}
height={64}
className="mr-3"
src={user.avatar_url}
alt="Generic placeholder"

/>

<Media.Body>

<h5>Login: {user.login}</h5>
<p>Id: { user.id }</p>

</Media.Body>
</Media>

);

return (
<div>

<h3>GitHub Users Results</h3>
{ this.state.isLoading &&

<ReactLoading type="spinningBubbles" color="#444" />
}
{listUsers}

</div>

);
}

Lastly, import the elements used in the react-bootstrap component with the
import statement. Remember to install react-bootstrap if you have not done
so.
import { Media, Form, FormGroup, FormControl, Button } from 'react-bootstrap';

Code Explanation
const listUsers = this.state.data.map((user) => <Media>…

We use map to repeat the media object for each user data we get from
GitHub.

We then add Javascript JSX expressions wrapped in {} inside the template.
The user’s id, html_url, avatar_url and login.

<Media key={user.id}>

<img
width={64}
height={64}
className="mr-3"
src={user.avatar_url}
alt="Generic placeholder"

/>

<Media.Body>

<h5>Login: {user.login}</h5>
<p>Id: { user.id }</p>

</Media.Body>
</Media>

Finally, we display our data by including listUsers in our return template as
shown below:

return (
<div>

<h3>GitHub Users Results</h3>
{ this.state.isLoading &&

<ReactLoading type="spinningBubbles" color="#444" />
}
{listUsers}

</div>
);

If you run your app now, you should get a similar page as shown below.

7.6 Adding an Input to GitHub Results Display Page
We are currently hard-coding our search term to ‘greg’ in our request to
GitHub. We will now use a search input so that a user can type in her search
terms and retrieve the relevant search result.

The final GitHub component code will look like below. The first change is
that we will not make a call to GitHub through componentDidMount in the
beginning as we will make the call only when a user clicks on Submit.
Therefore, we can remove componentDidMount

Next, in the constructor, we initialize isLoading to false at first since no call
to GitHub is made at the beginning. We add a state property ‘searchTerm’
which will be entered by the user. We also add the bindings for the
handleChange and handleSubmit methods of the form.

constructor(){
super();
this.state = {

data: [],
searchTerm:'',
isLoading : false

};

this.handleChange = this.handleChange.bind(this);
this.handleSubmit = this.handleSubmit.bind(this);

}

Once the user submits the form, we set isLoading to true just before the call
to getGitHubData to show the loading icon.

handleSubmit(e) {
e.preventDefault();
this.setState({

isLoading : true
})
this.getGitHubData(this.state.searchTerm);

}

Once we get notified of results from our GitHub request, we set isLoading to
false in getGitHubData to hide the loading icon.

getGitHubData(_searchTerm){
axios.get("https://api.github.com/search/users?q="+_searchTerm)

.then(res => {
this.setState({

isLoading : false,
data: res.data.items

})
console.log(res.data.items);

});
}

Next, add the <Form> component as shown in bold:
return (

<div>
<Form inline onSubmit={this.handleSubmit}>

<Form.Group controlId="formInlineName">
<Form.Control

type="text"
value={this.state.searchTerm}
placeholder="Enter Search Term"
onChange={this.handleChange}

/>
</Form.Group>
{' '}
<Button type="submit">

Search
</Button>

</Form>
<h3>GitHub Users Results</h3>
{ this.state.isLoading &&

<ReactLoading type="spinningBubbles" color="#444" />
}
{listUsers}

</div>
);

Also import the Form and Button components from react-bootstrap:
import { Media, Form, Button } from 'react-bootstrap';

We use the Form inline to render a simple form with a single input (fig.
7.6.1) which is binded to the state’s searchTerm property.

figure 7.6.1

Remember to implement the handleChange method which sets the keyed
input to the state.

handleChange(e) {
this.setState({ searchTerm: e.target.value });

}

Also remove the call to getGitHubData in componentDidMount:
componentDidMount(){

this.getGitHubData('greg');
}

Running your App

You can now see GitHub user results displayed as you submit your search
terms.

Summary

In the chapter, we learned how implement a GitHub User Search application
by connecting our React app to the GitHub RESTful api using Axios,
Promises, component lifecycles and displaying a loader icon.

CHAPTER 8: ROUTING

We have so far covered displaying components in a single view. But what if
we have multiple views that a user needs to navigate from one to the next? In
this chapter, we will explore Routers that provide screen navigation in our
React Single Page Application.

We are familiar with navigating websites. We enter a URL in the address bar
and the browser navigates to a corresponding page. We click links on the
page and the browser navigates to a new page. We click the browser's back
and forward buttons and the browser navigates backward and forward
through the history of pages we've seen.

The React Router library borrows from this model. It interprets a browser
URL as an instruction to navigate to a client-generated view. It can also pass
optional parameters along to the supporting view component to help it decide
what specific content to present.

Note: React doesn ’ t come with a standard router. React Router is a routing
solution created by engineers Michael Jackson and Ryan Florence. It has
been adopted by the React community as a popular solution for React apps.

We can bind the router to links on a page and it will navigate to the
appropriate application view when the user clicks a link. We can also
navigate imperatively when the user clicks a button, selects from a dropbox,
or from other user-generated events. And because the router logs activity in
the browser's history journal, the back and forward buttons work as well.

In this chapter, we will extend our project from chapter seven to add routing
to navigate between Home, GitHub and Not Found components.

Installing React-Routing-DOM

The first step to building a Single Page application is to install the react-
router-dom library by executing the below in the Terminal:
npm install --save react-router-dom

8.1 Setting Up Our Routes

After installing the react-router-dom library, we need to define our routes.
Each route is an endpoint that can be entered into the browser’s location bar.
When a route is requested, we can render the appropriate content.

In your project from the previous chapter, add the following codes in App.js:
import React, { Component } from 'react';
import GitHub from './GitHub';
import {BrowserRouter, Route, Switch} from 'react-router-dom';

class App extends Component {
render() {

return (
<div>

<Header />
</div>

);
}

}
export default App;

class Header extends Component {
render(){

return (
<BrowserRouter>

<div>
<Switch>

<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>
)

}
}

class Home extends Component {
render(){

return (
<div>

Home
</div>

)
}

}

class NotFound extends Component {
render(){

return <div>Not Found</div>
}

}

Code Explanation
class App extends Component {

render() {
return (

<div>
<Header />

</div>
);

}
}

First, in App, we render a Header component.
class Header extends Component {

render(){
return (

<BrowserRouter>
<div>

<Switch>
<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>
)

}
}

Our header component contains BrowserRouter, Switch and Route imported
from the ‘react-router-dom’ library which provide the essential routing
functionalities.

BrowserRouter contains a list of Route components. The routes tell the router
which component to render when the window’s location changes. Each Route
component associates a path to a component. Each Route definition has at
least two properties, path, which is the unique name we assign to our route,
and component which specifies the associated component. When the
browser’s location matches the path, the component will be displayed.

In our route definition, we have specified three components.
GitHubComponent, HomeComponent, and NotFoundComponent. To make it
easier to illustrate, we define HomeComponent and NotFoundComponent in

App.js instead of in separate files.
class Home extends Component {

render(){
return (

<div>
Home

</div>
)

}
}

class NotFound extends Component {
render(){

return <div>Not Found</div>
}

}

You will realize that HomeComponent and NotFoundComponent are very
basic components that simply displays a message. This is to illustrate
navigating to different views.

GitHub Component will simply contain the code we implemented back in
chapter seven in App component.

<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

Now, our route definition tells React that:

- if the path contains 'GitHub', React should create an instance of
GitHubComponent and render it in the DOM.

- if the path contains '/', React should create an instance of
HomeComponent and render it in the DOM. Notice that this route has
the exact property. Why do we need exact? Without exact, routes are
matched to a path if the URL we are on contains the path. This means
that if someone navigates to ‘/github’, because it contains ‘/’, Home
component will be shown as well. Thus, both GitHub and Home
component will be shown at the same time which is not what we want.
We therefore specify exact so that Home component will only be
displayed when the location exactly matches the root ‘/’.

- Lastly, if a user navigates to a route that we have not defined, the path
'/*' is a wildcard that catches all invalid routes and directs to

NotFoundComponent.

In general, more specific route paths should be specified first, i.e. ‘/github’.
Other more inclusive paths like ‘/*’ should be specified later. An additional
measure to avoid showing more than one component, is to wrap our routes
within the Switch component.

<Switch>
<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

</Switch>

The Switch component only displays the first route that matches. This assures
that only one of these routes will be rendered.

At this point, we can run the app and when you physically type the routes
into the browser’s location bar, you can watch the content change. We of
course do not expect users to navigate our website by typing routes into the
location bar. In the next section, we introduce the Link component provided
by react-router-dom to create browser links.

8.2 Navigation Bar Links
Links

Having defined and configured our routes in Header component, we can now
add our navigation links to Home and GitHub component. In App.js, add the
below codes in bold.
…
import {BrowserRouter, Route, Switch } from 'react-router-dom';
import { Nav, Navbar } from 'react-bootstrap';

…
class Header extends Component {

render(){
return (

<BrowserRouter>
<div>

<Navbar bg="light" expand="lg">
<Navbar.Brand href="#home">React-Bootstrap</Navbar.Brand>
<Navbar.Toggle aria-controls="basic-navbar-nav" />
<Navbar.Collapse id="basic-navbar-nav">

<Nav className="mr-auto">

<Nav.Link href="/">Home</Nav.Link>
<Nav.Link href="/github">GitHub</Nav.Link>

</Nav>
</Navbar.Collapse>

</Navbar>
<Switch>

<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>
)

}
}

Code Explanation

The Navbar component markup (and along with its child components) is
taken from react-bootstrap’s navbar component template (https://react-
bootstrap.github.io/components/navbar/). Navbar provides for a professional-
looking navigation bar (fig. 8.2.1).

figure 8.2.1

Note that the default navbar in react-bootstrap renders a navbar with other
items in it. We can get rid of the dropdown and keep only the Home and
GitHub links for cleaner code.

<Nav className="mr-auto">
<Nav.Link href="/">Home</Nav.Link>
<Nav.Link href="/github">GitHub</Nav.Link>

</Nav>

We provide two navigation items in the navbar with two NavItems.

React Router will navigate the user to the target route specified by finding the
route definition with that name. It will then create an instance of the
component and render it

And if we try a non-existent route, we get a ‘not found’ page because we
have earlier declared the wildcard path to direct to NotFoundComponent.

https://react-bootstrap.github.io/components.html#navbars)

<Switch>
<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

</Switch>

If we run our app now, we'll get a view like in figure 8.2.2.

figure 8.2.2

And if we navigate to GitHub, we get the view like in figure 8.2.3

figure 8.2.3

And when you try to enter in an unspecified url, you get the
NotFoundComponent rendered like in figure 8.2.4

figure 8.2.4

Try It Yourself - Adding a New Link
Now, try adding a new link on your own. Remember that you will have to
add the new Link in the Header Component like below:

<Nav className="mr-auto">
<Nav.Link href="/">Home</Nav.Link>
<Nav.Link href="/github">GitHub</Nav.Link>
<Nav.Link href="/<path_name>">Path Text</Nav.Link>

</Nav>

Next in Header, import the additional component and add the new path under
Switch as shown below:

<Switch>
<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route exact path="<path_name>" component={YourOwnComponent} />
<Route path="/*" component={NotFound} />

</Switch>

8.3 Route Parameters
We will now illustrate how to create routes that takes in route parameters.
Why do we need this? For example, from the GitHub results page, if we want
to navigate to a page to see the details of a specific GitHub user, we can pass
in the information via route parameters.

In Header, we add a route that takes in two route parameters as shown below
in bold.
…
import GitHubUser from './GitHubUser';
…

class Header extends Component {
render(){

return (
<BrowserRouter>

<div>
<Navbar>

…
</Navbar>

<Switch>
<Route path="/github/user/:login/:id" component={GitHubUser}

/>
<Route path="/github" component={GitHub} />
<Route exact path="/" component={Home} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>
)

}
}

Code Explanation

We first import the GitHubUser component which we will implement later.
The GitHubUser Component simply displays some information about a

specific GitHub User.

Next, we add a route

<Route path="/github/user/:login/:id" component={GitHubUser} />

/:login/:id represents the login route parameter and the id route parameter. If
we want to pass in only one parameter for e.g. login, it will be just
github/user/:login. We can pass in multiple parameters (more than two) if we
want to.

With this route, whenever we navigate to a url for e.g.
http://localhost:3000/GitHub/user/gregkh/45

React will render the GitHubUser Component with the parameter login
‘gregkh’ and id ’45’.

You might ask, why is our route github/user/:login/:id and not user/:login/:id? That is
because our GitHub search results is displayed in
http://localhost:3000/GitHub/. If our search results is displayed in the root i.e.
http://localhost:3000/, then our route will be user/:login/:id.

Specifying Route Parameters
In this section, we illustrate specifying route parameters in each GitHubUser
Link. In the template of GitHub.js, change the line in bold.
const listUsers = this.state.data.map((user) =>

<Media key={user.id}>
<Nav.Link href={`/github/user/${user.login}/${user.id}`}>

<img
width={64}
height={64}
className="mr-3"
src={user.avatar_url}
alt="Generic placeholder"

/>
</Nav.Link>
<Media.Body>

<h5>Login: {user.login}</h5>
<p>Id: { user.id }</p>

</Media.Body>
</Media>

);

http://localhost:3000/GitHub/
http://localhost:3000/

Code Explanation
<Nav.Link href={`/github/user/${user.login}/${user.id}`}>

<img
width={64}
height={64}
className="mr-3"
src={user.avatar_url}
alt="Generic placeholder"

/>
</Nav.Link>

We add a Nav.Link to the user image of each search result. When one clicks
on the user image, she will be routed to GitHubUser Component with
parameters login and id. Note that ES6 allows us to use back ticks to bind our
route parameters into the route path:
href={`/github/user/${user.login}/${user.id}`

Retrieving Route Parameters
Next, we create GitHubUser Component that shows the details of a particular
user. In our case, we will just show the login and id of the user. Create and
fill in GitHubUser.js with the below code.
import React, { Component } from 'react';

class GitHubUser extends Component {

constructor(props){
super(props);

}

render() {
return (

<div>
<h1>User Login: { this.props.match.params.login }</h1>
<h2>User Id: { this.props.match.params.id }

</h2>`
</div>

);
}

}

export default GitHubUser;

Code Explanation

render() {
return (

<div>
<h1>User Login: { this.props.match.params.login }</h1>
<h2>User Id: { this.props.match.params.id }

</h2>`
</div>

);
}

In the render method, we display login and id by getting the route parameters
using:

<h1>User Login: { this.props.match.params.login }</h1>
<h2>User Id: { this.props.match.params.id }</h2>`

this.props.match.params is an object that holds all the values passed through
parameters. We obtain the parameters by specifying them, in this case ‘login’
and ‘id’.

Running your App

If you run your app now and click on one of the GitHub search results, you
will be brought to the GitHubUser component which will show you the login
and Id details of that GitHub user (fig. 10.3.1).

figure 8.3.1

8.4 Programmatic Navigation
Suppose we want to redirect a user to another page upon clicking a button or
upon clicking submit in a form. In such a case, we cannot use the Nav.Link
directive. Instead, we need to talk to the React router directly and this is what
we called programmatic navigation.

The below codes in GitHubUser.js illustrate this:
import React, { Component } from 'react';

import { Button } from 'react-bootstrap';

class GitHubUser extends Component {

constructor(props){
super(props);
this.handleClick = this.handleClick.bind(this);

}

handleClick(e) {
this.props.history.push("/github");

}

render() {
return (

<div>
<h1>User Login: { this.props.match.params.login }</h1>
<h2>User Id: { this.props.match.params.id }

</h2>`
<Button variant="primary" onClick={this.handleClick}>

Go to GitHub Users
 </Button>

</div>
);

}
}

export default GitHubUser;

Code Explanation
<Button variant="primary" onClick={this.handleClick}>

Go to GitHub Users
 </Button>

In render, we have a Go to GitHub Users button and we do event binding to
bind it to the handleClick() method.

constructor(props){
super(props);
this.handleClick = this.handleClick.bind(this);

}

Remember to bind the method in the constructor:
handleClick(e) {

this.props.history.push("/github");
}

In the handleClick method, we call the push method of this.props.history

which takes in the name of the target route. When the user clicks on the
button, the new route is pushed onto the history object. Pushing the route into
history will cause the navigation to occur.

Running your App

If you run your app now, you will be able to go back to the GitHub page from
the GitHubUsers page by clicking on the ‘Go to GitHub Users’ button.

Summary
In this chapter, we learned how to build single page apps with routing. We
learned how to define, configure and render requested components using the
Route component. We also learned about providing route links, how to create
routes with parameters and how to retrieve the parameters.

We have covered a lot in this chapter. Contact me at support@i-ducate.com if
you have not already to have the full source code for this chapter or if you
encounter any errors with your code.

mailto:support@i-ducate.com

CHAPTER 9: C.R.U.D. WITH FIREBASE

In this chapter, we will cover how to implement full C.R.U.D. operations in
React with a backend server. A typical web application architecture consists
of the server side and client side. This book teaches you how to implement
the client side using React. The client side talks to a backend server to get or
save data via RESTful http services built using server-side frameworks like
ASP.NET, Node.js and Ruby on Rails. We have explored this when we
obtained data from the GitHub server in chapter seven.

Building the server side, however is often time-consuming and not within the
scope of this course. In this chapter, however, we will explore using Firebase
as our backend server. Firebase is Google ’ s real-time database which offers
a very powerful backend platform for building fast and scalable real-time
apps.

With Firebase, we don’t have to write server-side code or design relational
databases. Firebase provides us with a real-time, fast and scalable NoSQL
database in the cloud and we use a library to talk to this database. This allows
us to focus on building our application according to requirements rather than
debugging server-side code.

You might ask, what is a NoSQL database? In contrast to relational databases
which consist of tables and relationships, in a NoSQL database, we have a
tree of JSON objects and each node in the tree can have a different structure.
Because we do not have to maintain table schemas, NoSQL databases
provide us with one thing less to worry about, thereby increasing
productivity. However, if your application involves lots of data aggregating,
complex querying and reporting, a relational database might still be a better
choice.

This chapter aims to illustrate create, read, update and delete functionality
with React and Firebase integrated so that you can go on and create a fully
working app. And if you choose to have a different backend server like
ASP.NET, Node.js, the same principles will apply.

More on Firebase

Firebase is a real time database. which means that as data is modified, all
connected clients are automatically refreshed in an optimized way. If one user
adds a new item either through a browser or a mobile app, another user (again
either through a browser or mobile app) sees the addition in real time without
refreshing the page. Firebase of course provides more than just a real time
database. It offers other services like Authentication, cloud messaging, disk
space, hosting, analytics and more. You not only can develop React apps with
Firestore as backend but also iOS, Android and web applications.

React and firebase work very well together especially in terms of receiving
data and state management. This is because firebase provides real-time data
synchronization by allowing us to subscribe to an event and give us a new set
of data that we can readily call setState which re-renders our entire
application.

9.1 Using Firebase
We can use Firebase features for free and only pay when our application
grows bigger. You can choose between a subscription based or ‘pay as you
use’ model. Find out more at firebase.google.com/pricing.

Before adding Firebase to our React project, we need to first create a Firebase
account. Go to firebase.google.com and sign in with your Google account.

In the Firebase console (https://console.firebase.google.com/), click on ‘Add
Project’ (figure 12.1)

figure 9.1.1

Fill in the project name, optionally enable Google Analytics for your project
and click ‘Create Project’.

When your project is created, in the project page, under ‘’ Get started by
adding Firebase to your app ’ , click on the </> icon to add firebase to our
web app (figure 12.1.2).

figure 9.1.2

Fill in a app nickname. Leave the Firebase Hosting checkbox unchecked for
now since it can be setup later. Click ‘Register app’ (fig. 12.1.3).

figure 9.1.3

You will see some configuration code that you need to add in your project
(fig. 9.1.4).

figure 9.1.4

Code Explanation
<script src="https://www.gstatic.com/firebasejs/7.13.2/firebase-app.js"></script>

This is a script reference to Firebase SDK. firebase.js gives us a library to
work with firebase.
<script>

// Your web app's Firebase configuration
var firebaseConfig = {

apiKey: "AIzaSyCOxp3etKT0NXT6TECx79EXQ6BorcBxXOM",
authDomain: "reactcrud-b819e.firebaseapp.com",
databaseURL: "https://reactcrud-b819e.firebaseio.com",
projectId: "reactcrud-b819e",
storageBucket: "reactcrud-b819e.appspot.com",
messagingSenderId: "61064054237",
appId: "1:61064054237:web:bd3bb5dd8cbf7599d1a234",
measurementId: "G-2Y5SMQ4WL3"

};
// Initialize Firebase
firebase.initializeApp(firebaseConfig);
firebase.analytics();

</script>

We have a config or configuration object with properties apiKey,
authDomain (a subdomain under firebaseapp.com), databaseUrl,
storageBucket (for storing files like photos, videos etc.), messagingSenderId
(used for sending push notifications) and appId.

As instructed, copy and paste these scripts into the bottom of your <body>
tag, but before you use any Firebase services.

9.2 Adding Firebase to our React App
To illustrate connecting Firebase to our React app, we will create a new
project using create-react-app (I have named my project ReactCRUD).
Remember to add react-bootstrap to your project.

create-react-app reactcrud

We will next use npm to add firebase to our project.

npm install firebase --save

index.js

In index.js of the newly created project, add the lines in bold below. Note that
the credential properties in firebaseConfig should be your own (copied from
firebase console)
import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';
import * as firebase from 'firebase';

var config = {
apiKey: "AIzaSyBN9WlmRc3SedmC4agM1G-rYqezGR22iZE",
authDomain: "crudproject-45834.firebase app.com",

databaseURL: "https://crudproject-45834.firebaseio.com",
projectId: "crudproject-45834",
storageBucket: "crudproject-45834.appspot.com",
messagingSenderId: "590481645308"
appId: “…”

};

firebase.initializeApp(config);
ReactDOM.render(<App />, document.getElementById('root'));
serviceWorker.unregister();

We initialize firebase in our app with the configurations as provided in the
firebase console. This lets us connect to the right database.

App.js

Now to make sure that we have added firebase correctly to our project, go to
App.js and add the lines bold below.
import React, { Component } from 'react';
import * as firebase from 'firebase';

class App extends Component {

constructor(){
super();
console.log(firebase);

}

render() {
return (

<div>
<h1></h1>

</div>
);

}
}

export default App;

Make sure that the lite web server is running (by executing npm start) and in
the console, you should see the firebase object printed in the console as
shown in figure 9.2.1 to prove that we have added firebase correctly.

figure 9.2.1

9.3 Working with a Firebase Database
Now let’s look at our Firebase database. Go to console.firebase.google.com.
Click on your project, and under ‘Develop’, click on ‘Database’. Under
‘Realtime Database’, click on ‘Create database’ as shown in fig. 9.3.1.

Figure 9.3.1

On the next screen shown below (fig. 9.3.2), choose ‘test mode’ and then
click ‘Next’.

figure 9.3.2

Choose the default settings given for ‘Cloud Firestore location’. It will then
set up security rules.

When you are brought back to the Database console, make sure that you
select ‘Realtime Database’ and NOT ‘Cloud Firestore’.

What’s the difference between a Realtime Database and Cloud Firestore? To
summarize, in Firestore, we store our data in terms of collections, and
documents in these collections (fig. 12.3.5). But in a Realtime Database, we
are essentially having a NoSQL database. In this chapter, we will be working
with a Realtime database.

If you have not worked with NoSQL databases before, you might find it odd
in the beginning because there is no concept of tables or relationships here.
Our database is basically a tree of key value pair objects. We store json
objects here that map natively to json objects in JavaScript. So when working
with a NoSQL database on the backend, we get a json object from the server
and we simply display in on the client. Or we construct a json object on the
client and send it to server and we store it as it is. There is no additional
mapping needed i.e. from relational format to json format or vice-versa.

Click + to add a new child node to the tree. Each node has a name and a
value. Value can be a primitive type like string, boolean, number or it can be
a complex object.

When you click Add, a new node will be added.

(Note that when you add a new child node, the child node gets highlighted in
green and the parent node in yellow for a few seconds. If you try deleting a
node, that node gets highlighted in red.)

Our values can also be complex objects. You can add complex objects by
clicking on the + sign in Value of an existing child node. The below tree has
a childnode 0 that contains further properties.

You can of course have complex objects in complex, for e.g.

Essentially, we have a hierarchy of key value pairs in a NoSQL database. We
don’t have tables and relationships. The modeling of objects and their
relationships vital to an enterprise level application is beyond the scope of
this book.

In the next sections, we will illustrate with a simple example of user objects
in our NoSQL database.

9.4 Displaying List of Users
We will illustrate how to display a list of users. But before that, we need to
have existing user data in Firebase. We will use users data from
jsonplaceholder at http://jsonplaceholder.typicode.com/. jsonplaceholder
provides with a fake online REST api and data for testing. So head to

http://jsonplaceholder.typicode.com/users

and save the json file. I have saved it as users.json. We can import this json

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/users

file into our Firebase database by going to Database, click on the right most
icon, and select ‘Import JSON’ (fig. 9.4.1).

figure 9.4.1

Browse to the user json file you saved and click ‘Import’ (fig. 9.4.2).

figure 9.4.2

The users data will be imported into firebase (fig. 9.4.3).

figure 9.4.3

User.js

Next, we will create a user component to display our list of users. Create
User.js in src with the following code.
import React, { Component } from 'react';
import * as firebase from 'firebase';

class User extends Component {

constructor(props){
super(props);
this.state = {

users: []
};

}

componentDidMount(){
firebase.database().ref('/')

.on('value',snapshot => {
console.log(snapshot.val())

});
}

render() {
return (

<div>
</div>

);
}

}

export default User;

Code Explanation
import * as firebase from 'firebase';

We import firebase and use it to access our database node in
componentDidMount. Remember that componentDidMount is called after the
first render of the component. This is where server requests and state updates
should occur.

componentDidMount(){
firebase.database().ref('/')

.on('value',snapshot => {
console.log(snapshot.val())

});
}

In componentDidMount, we specify the location of a node in firebase as an
argument to the firebase.database().ref method to retrieve our list of users.

firebase.database() provides us with a Firebase Database service interface
and its ref method returns the location in the Database corresponding to the
provided path.

In our case, our list of users is at the root node and thus, we specify ‘/’. But
say if our list of users is a child node under the parent node ‘GitHub’, we
would then have something like

firebase.database().ref('/GitHub')

We then listen for data changes at our specified location by providing a
callback function to the on method:
componentDidMount(){

firebase.database().ref('/')
.on('value',snapshot => {

console.log(snapshot.val())
});

}

This is the primary way to read data from a Database. Our callback will be
triggered for the initial data and again whenever the data changes. That is,
when we add, edit or delete a user, the callback will be triggered and we will
have the updated list.

In the callback, we have a snapshot of DataSnapshot type that contains data
from a Database location.
Any time you read data from a firebase Database, you receive the data as a
DataSnapshot. A DataSnapshot is passed to the event callback you attach
with on(). You can extract the contents of the snapshot as a JavaScript object
by calling the val() method.

In our case, console.log(snapshot.val()) prints the contents of our snapshot as
shown:

If we run our app now, we can ’ t see any data or will get an error saying
something like “Permission denied. Client doesn’t have permission to access
the desired data.” This is because in firebase, our firebase permission rules
are currently configured as:
{

"rules": {
".read": "auth != null",
".write": "auth != null"

}
}

The above permissioning rule is a json object that determines the rules for
reading and writing of data. You can access these rules in firebase console,
under Database, Rules tab. Essentially, the code is saying that read and write
permission is only granted to those who are logged in or authenticated (auth
!= null). Because firebase authentication and authorization is beyond the
scope of this book, and to quickly get a fully working React app, we will set
both read and write permissions to be public, where anyone can read or write
to our database.

So in firebase console in the Rules tab, edit the permission rules as shown
below and click Publish. Note that whenever we make changes to our
permission rules, we need to publish the changes.
{

"rules": {
".read": true,
".write": true

}
}

Now because Firebase is a NoSQL JSON data store, when we get some data
from Firebase, we get an object containing keys and objects for all of our user
data.

We will convert the returned single object to an array to help us iterate
through the data easier by adding the codes in bold below:

componentDidMount(){
firebase.database().ref('/')

.on('value',snapshot => {
let returnArr = [];
snapshot.forEach(data => {

var user = data.val();
user['key'] = data.key;
returnArr.push(user);

});
this.setState({

users: returnArr
})

});
}

We declare an empty array returnArr, and for each object data in snapshot,
we retrieve it with data.val(). We then assign the key property value to the
user object. Remember that firebase generates and assigns a key value to an
object that is newly added to the firebase database.

user['key'] = data.key;

The key property will be important for us later when we use it to retrieve a
single specific object from firebase for deletion and update.

returnArr.push(user);

We then push it into returnArr and finally setState returnArr to users.

User.js Render

Now before we implement our template in render() of User.js, make sure that
you have installed react-bootstrap with the following command in Terminal:
npm install --save react-bootstrap bootstrap

Make sure that you have also included the below css reference in index.js or
App.js:
import 'bootstrap/dist/css/bootstrap.min.css';

Having done that, go to react-bootstrap website, and under ‘Components’,
‘Tables’ (https://react-bootstrap.github.io/components/table/), reference the
tables code and in User.js, implement it in render like below:

render() {
const listUsers = this.state.users.map((user) =>
<tr key={user.key}>

<td>{user.username}</td>
<td>{user.email}</td>
<td>Edit</td>
<td>Remove</td>

</tr>
);

return (
<div>

<Table striped bordered hover>
<thead>

<tr>
<th>Username</th>
<th>Email</th>
<th>Edit</th>
<th>Delete</th>

</tr>
</thead>
<tbody>

{listUsers}
</tbody>
</Table>

</div>
);

}

Remember to import Table with the import statement at the top:
import { Table } from 'react-bootstrap';

Code Explanation
<Table striped bordered condensed hover>

We use the bootstrap component Table to create a nice-looking table for
listing our users (fig. 9.4.4).

figure 9.4.4

We also display edit and remove links in each row for the edit and delete
operations we will implement later.

const listUsers = this.state.users.map((user) =>
<tr key={user.key}>

<td>{user.username}</td>
<td>{user.email}</td>
<td>Edit</td>
<td>Remove</td>

</tr>
);

Preparing for Routing
In this section, we prepare to define our routes to our User component, a Not
Found component and a User Form component for adding and editing users.

App.js

Create the routing configuration in App.js as shown below. Remember to run
npm install --save react-router-dom if you have not already done so.
import React, { Component } from 'react';
import User from './User';
import {BrowserRouter, Route, Switch} from 'react-router-dom';

class App extends Component {

render() {
return (

<div>
<BrowserRouter>

<div>
<Switch>

<Route exact path="/" component={User} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>
</div>

);
}

}

export default App;

class NotFound extends Component {
render(){

return <div>Not Found</div>

}
}

App.js currently contains two routes. The first is the exact path ‘ / ’ which
points to User component and the other is the wildcard path which points to
NotFound component. We will extend the routes later to include the route to
the User Add and Edit form. To make the code cleaner, we also removed the
previous logging code to see if we have installed firebase correctly.

Running your App

Now if you run your app, you should see a list of users rendered.

Now, try going back to the firebase console and add a new user node. When
you go back to your React app, you will realize that the user list is refreshed
automatically with the new node! Or if you delete a node from the firebase
console, the list is refreshed to reflect the deletion as well. And that’as the
beauty of firebase. We achieved auto-refresh upon adding, updated, delete
with the code we have implemented as shown below:

componentDidMount(){
firebase.database().ref('/')

.on('value',snapshot => {
let returnArr = [];
snapshot.forEach(data => {

var user = data.val();
user['key'] = data.key;
returnArr.push(user);

});
this.setState({

users: returnArr
})

});
}

9.5 Adding a User
User.js

Next, we will implement adding a user to our app by adding a button ‘ Add
User ’ just before the user list in User.js. Add it and decorate it with bsStyle
primary as shown in the code below:
<div>

<Button variant="primary" onClick={this.add}>Add</Button>

<Table striped bordered condensed hover>
<thead>
…

Remember to import Button from ‘react-bootstrap’ :

import { Table, Button } from 'react-bootstrap';

When we click this button, we route to a new page with a form to add a new
user. To create this route, implement the add() method in User.js as shown
below.

add(e) {
this.props.history.push("/add");

}

Remember that this.props.history.push navigates the user to the specified
target route. Also remember to bind add() to our class in the constructor:

constructor(props){
super(props);
this.state = {

users: []
};
this.add = this.add.bind(this);

}

App.js

In App.js, import and add the path to UserForm component as shown below.
UserForm contains the form to add a user. We will create UserForm
component in the next section.
import React, { Component } from 'react';
import User from './User';
import UserForm from './UserForm';
import {BrowserRouter, Route, Switch} from 'react-router-dom';

class App extends Component {

render() {
return (

<div>
<BrowserRouter>
<div>

<Switch>
<Route path="/add" component={UserForm} />
<Route exact path="/" component={User} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>
</div>

);
}

}
…

UserForm.js

Next, create the new component UserForm.js that implements a form with
fields, username and email as shown below. Note that the UserForm code is
rather lengthy and you can copy it from my GitHub repo at
https://github.com/greglim81/react-chapter9. Also remember to run npm
install formik --save to install formik.

import React, { Component } from 'react';
import { Formik, Form, Field, ErrorMessage } from 'formik';
import * as firebase from 'firebase';

class UserForm extends Component {

render(){
return(

<div>
<h1>{this.title}</h1>
<Formik

initialValues={{ username: '', email: '' }}
validate={values => {

let errors = {};
if (!values.email) {

errors.email = 'Required';
} else if (

!/^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$/i.test(values.email)
) {

errors.email = 'Invalid email address';
}
else if (values.email.length < 10) {

errors.email = 'Email address too short';
}

if (!values.username) {
errors.username = 'Required';

}
else if (values.username.length < 3) {

https://github.com/greglim81/react-chapter9

errors.username = 'username too short';
}

return errors;
}}
onSubmit={(values, { setSubmitting }) => {

setTimeout(() => {
// actual submit logic...
firebase.database().ref('/').push({

username: values.username,
email: values.email

}).then(() => this.props.history.push("/"));

setSubmitting(false);
}, 400);

}}
>

{({ isSubmitting }) => (
<Form>

<Field type="email" name="email" />

<ErrorMessage name="email" component="div" />

<Field type="text" name="username" />

<ErrorMessage name="username" component="div" />

<button type="submit" disabled={isSubmitting}>

Submit
</button>

</Form>
)}

</Formik>
</div>

)
}

}

export default UserForm;

Code Explanation
Although the above UserForm code is rather lengthy, much of the code
should be familiar to you as explained in Chapter 6: Forms. If not, go back
to that chapter for a revision.

FirebaseListObservable Push

Here I would like to focus on onSubmit()which is called by the form upon
submit.

onSubmit={(values, { setSubmitting }) => {
setTimeout(() => {

// actual submit logic...
firebase.database().ref('/').push({

username: values.username,
email: values.email

}).then(() => this.props.history.push("/"));

setSubmitting(false);
}, 400);

}}

To add an object to firebase, we use the push method from our
firebase.database().ref('/') which we covered earlier in listing users. push
generates and writes to a new child location with the value supplied. It writes
to the new child location using a unique key as covered previously when we
stored this key in user.key. Unique keys are designed to be unguessable (they
contain 72 random bits of entropy).

To be able to add an object to firebase, we need to have write permission.
Earlier on, we have set this to true in the firebase console.

When the operation to add a new user completes, we are notified because we
have subscribed to it using then. We then navigate back to the list of users
with this.props.history.push("/").

Running your app

Run your app now. Go to the Add form, enter in a new username and email
and upon submitting the form, you should be able to see your new user object
added to the list.

9.6 Deleting a User
Next, we want to delete a user by clicking on the delete icon in a row of the
user list following which, a delete dialog box will appear asking us if we
want to delete the user (fig. 9.6.1).

figure 9.6.1

User.js

To implement this, we first add two properties, showDeleteDialog and
selectedUser to our component state:
class User extends Component {

constructor(props){
super(props);
this.state = {

users: [],
showDeleteDialog: false,

selectedUser: {}
};

}

showDeleteDialog is used to decide when to show a delete dialog. When
showDeleteDialog is false, we don’t show the delete dialog. We set it to true
when the delete button is clicked to show the delete dialog. selectedUser
holds the current selected user so that we know which specific user to delete.

Next, we bind the onClick event of the delete button to the
openDeleteDialog() method with user object (from firebase) as argument.

render() {
const listUsers = this.state.users.map((user) =>
<tr key={user.key}>

<td>{user.username}</td>
<td>{user.email}</td>
<td>Edit</td>

<td>
<Button onClick={ this.openDeleteDialog.bind(this,user)}>Remove</Button>

</td>
</tr>
);

Next, we implement the openDeleteDialog() method:
openDeleteDialog(user){

this.setState({
showDeleteDialog: true,
selectedUser: user

});
}

openDeleteDialog simply sets showDeleteDialog to true to show the delete
dialog which we will implement in render() later. It also sets selectedUser to
the user which is clicked.

Delete Dialog
For the delete dialog, we make use of the Modal component (fig. 9.6.2) from
react-bootstrap (https://react-bootstrap.github.io/components.html#modals).

figure 9.6.2

In react bootstrap site, ‘Overlays’, ‘Modals’, copy the markup for ‘Static
Markup’ and paste into render() as shown in bold below:
import { Table, Button, Modal } from 'react-bootstrap';

…
return (

<div>
<Button variant="primary" onClick={this.add}>Add</Button>
<Table striped bordered condensed hover>
<thead>

<tr>
<th>Username</th>
<th>Email</th>
<th>Edit</th>
<th>Delete</th>

</tr>
</thead>
<tbody>

https://react-bootstrap.github.io/components.html#modals)

{listUsers}
</tbody>
</Table>
<Modal show={this.state.showDeleteDialog} onHide={this.closeDeleteDialog}>

<Modal.Header closeButton>
<Modal.Title>Delete User</Modal.Title>

</Modal.Header>
<Modal.Body>

<p>Are you sure you want to delete
{this.state.selectedUser.username}?</p>

<hr />
</Modal.Body>
<Modal.Footer>

<Button onClick={this.delete}>Delete</Button>
<Button onClick={this.closeDeleteDialog}>Close</Button>

</Modal.Footer>
</Modal>

</div>
);

Code Explanation
<Modal show={this.state.showDeleteDialog} onHide={this.closeDeleteDialog}>

First, we set the show attribute of Modal to this.state.showDeleteDialog. The
Modal will only show when this.state.showDeleteDialog is true.

We next bind closeDeleteDialog to the onHide event which is called when
the Modal is hidden. We will implement closeDeleteDialog later which
simply sets showDeleteDialog to false and selectedUser to null.

<Modal.Header closeButton>
<Modal.Title>Delete User</Modal.Title>

</Modal.Header>
<Modal.Body>

<p>Are you sure you want to delete
{this.state.selectedUser.username}?</p>

<hr />
</Modal.Body>

We then specify the descriptions we want to appear in the header and in the
body as shown in the above code. We customize the prompt message with
{this.state.selectedUser.username} to show the user name that we are about to delete.

<Modal.Footer>
<Button onClick={this.delete}>Delete</Button>
<Button onClick={this.closeDeleteDialog}>Close</Button>

</Modal.Footer>

In Modal Footer, we bind delete() to the Delete button and closeDeleteDialog
to the Close button.

closeDeleteDialog() and delete()
closeDeleteDialog() {

this.setState({
showDeleteDialog: false,
selectedUser: {}

});
}

closeDeleteDialog sets the state’s showDeleteDialog to false to hide the
delete Modal and also sets selectedUser to null.

delete(e) {
firebase.database().ref('/'+this.state.selectedUser.key).remove()
.then(x=> {

console.log("SUCCESS");
this.closeDeleteDialog();

})
.catch(error => {

alert("Could not delete the user.");
console.log("ERROR", error)

});
}

In the delete() method, we reference the specific user node location to delete
in firebase database with
firebase.database().ref('/'+this.state.selectedUser.key). The location of the
user node is contained in the key property of the user we have clicked to
delete. Remember that we have the key property because whenever we add an
object to firebase, a unique key is generated for us. We use this unique key
stored in key to retrieve the object for deletion and later update.

After getting the user object, we then call its remove() method which returns
a promise. We provide a callback which calls closeDeleteDialog() upon
successful deletion. Any errors met while deleting can be caught in the catch
callback. If successful, we log “Success”, and if an error is caught, we log an
error message.

Lastly, remember to bind the closeDeleteDialog and delete method with the
below code in bold:

constructor(props){

super(props);
this.state = {

users: [],
showDeleteDialog: false,
selectedUser: {}

};
this.add = this.add.bind(this);

this.closeDeleteDialog = this.closeDeleteDialog.bind(this);
this.delete = this.delete.bind(this);

}

9.7 Populating the Form on Edit
Having implemented, list, add and delete, we will now implement edit.
Before we can implement edit, we need to retrieve the existing requested user
object and populate it on the form first. When a user clicks on the Edit icon,
she would be navigated to the User Form with the given user details
populated in the input fields. We should also change the title of the page to
Edit User instead of Add User. And if we access the User Form via the Add
User button, title should be New User.

First in App.js, we define a new route edit/:id with id being a parameter as
shown below. id will contain our user object id used to retrieve our user
object and populate the Edit form. Remember that more specific route paths
like ‘/edit/:id’ should be specified first and other more inclusive paths like
‘/*’ should be specified later.

App.js
<BrowserRouter>

<div>
<Switch>

<Route path="/edit/:id" component={UserForm} />
<Route path="/add" component={UserForm} />
<Route exact path="/" component={User} />
<Route path="/*" component={NotFound} />

</Switch>
</div>

</BrowserRouter>

User.js

Next, in User.js, we add the router link to the Edit icon with the parameter
user.key used to retrieve our user object and populate our form.

const listUsers = this.state.users.map((user) =>
<tr key={user.key}>

<td>{user.username}</td>
<td>{user.email}</td>
<td>

<Link to={`/edit/${user.key}`}>
Edit

</Link>
</td>

<td><Button onClick={ this.openDeleteDialog.bind(this,user)}>Remove</Button></td>

</tr>
);

Remember to import Link from ‘react-router-dom’ in your import statements:
import React, { Component } from 'react';
import * as firebase from 'firebase';
import { Table, Button, Modal } from 'react-bootstrap';
import { Link } from 'react-router-dom';

UserForm.js

Next in UserForm.js, add the codes below in bold.
class UserForm extends Component {

title;
id;

constructor(props){
super(props);
this.id = this.props.match.params.id;

this.title = 'New User';
this.state = {

username: '',
email:'',

};
if(this.id){

this.title = 'Edit User';
}

}

…

Implement also the componentDidMount method as shown below:
componentDidMount(){

if(this.id){
firebase.database().ref('/' + this.id)

.on('value',snapshot => {
this.setState({

username: snapshot.val().username,
email: snapshot.val().email,

});
});

}
}

Next, make the following changes in the Formik code:

…
<Formik

enableReinitialize={true}
initialValues={{

username: this.state.username,
email: this.state.email

}}
…

Code Explanation

We retrieve id from props.match.params.id. In componentDidMount, we
check if id is null, which means that we arrive at UserForm without a
parameter and want to perform adding a new user. In this case, we use the
default title of “New User” and do nothing in componentDidMount.

If id is valid (not null), it means that we arrive at UserForm with a parameter
and want to perform editing an existing user. In this case, we set the title to
“Edit User”. We then proceed to retrieve the user object in
componentDidMount with the below code:

componentDidMount(){
if(this.id){

firebase.database().ref('/' + this.id)
.on('value',snapshot => {

this.setState({
username: snapshot.val().username,
email: snapshot.val().email,

});
});

}
}

We retrieving our user object by providing id as argument to
firebase.database().ref('/' + this.id). We subscribe to it and when we retrieve

the snapshot, we set component state for username and email to the snapshot
values. With component state now containing our requested user object, the
form populates the username and email fields.

…
<Formik

enableReinitialize={true}
initialValues={{

username: this.state.username,
email: this.state.email

}}
…

We then render our Formik form with initial values of username and email
retrieved from the database. We need to set enableReinitialize={true} so that
the form reinitializes when initialValues prop changes, i.e. we get our
username and email populated from the firebase callback function.

Running your App

If you run your app now, when you click on an existing user, you will be
brought to the edit form which displays the title ‘Edit User’ with username
and email fields populated (fig. 9.7.1).

9.8 Updating a User
Finally, to update the user, we make some code changes and additions to
onSubmit() in UserForm.js. Fill in the below code into onSubmit():

UserForm.js
…

onSubmit={(values, { setSubmitting }) => {
setTimeout(() => {

// actual submit logic...
if(this.id){

firebase.database().ref('/'+this.id).update({
username: values.username,
email: values.email

}).then(() => this.props.history.push("/"));
}
else{

firebase.database().ref('/').push({
username: values.username,
email: values.email

}).then(() => this.props.history.push("/"));
}

setSubmitting(false);
}, 400);

}}
…

Code Explanation

Similar to what we did in the population of the UserForm, we first check if
there is an id, which means the form is in edit mode. If so, we call the update
method of firebase.database().ref to update. Else, which means the form is in
Add New User mode, we use the existing code which calls push() to add the
new user object to firebase.

Running your App

If you run your app now, your app should have full functionality to create,
update, delete and read user data from and to firebase.

Summary
In this chapter, we learned how to implement C.R.U.D. operations using
Firebase as our backend. We learned how to add firebase to our application,
how to work with the firebase database from the firebase console, how to
display a list of users, how to add a user with the push method, how to delete
a user with the remove method, retrieve a single firebase object to prepare our
form for edit and how to update a user.

With this knowledge, you can move on and build more complicated
enterprise level fully functional React applications of your own!

Please feel free to email me at support@i-ducate.com if you encounter any
errors with your code. Visit my GitHub repository at
https://github.com/greglim81 if you have not already to have the full source
code for this book.

mailto:support@i-ducate.com
https://github.com/greglim81

CHAPTER 10: INTRODUCTION TO REDUX

10.1 What is Redux?
Redux is a library that helps us manage the state of our application. It is
typically used in medium to large applications with complex data flow. A
simple application with simple data flow won ’ t really need Redux. In fact,
using Redux can add unnecessary complexity to our application. But what is
considered a large application?

In a typical React app, each component maintains its own local component
state. This fits well with the principle of encapsulation. But it can be a
problem when there are multiple views that communicates with the same data
especially when the views do not share a parent-child relationship.

In such scenarios, we often have multiple copies of the same data that are
independent of one another. So, when a view updates the data, we need to do
extra work to keep the other views ’ data in sync.

For example, in Facebook we have three views to represent the current state
of user messages. First, we have the navigation bar icon (fig. 10.1.1) which
shows the number of new messages.

Figure 10.1.1

Secondly, we have the new messages shown in the messages page and
thirdly, we might have one or more chat tabs opened.

These are independent views that need to be in sync and they don ’ t share a
parent child relationship. For example, the navigator bar is not in a parent
child relationship with the other views. If it was, we could use props to pass
data down and back up.

To keep data in-sync in this case, we have to do extra work. A common
solution is to use events. But when the app grows, it will turn into event
spaghetti where we have events all over our code. To track what happens to
the application state, we have to jump all over our code to find out. What

makes our problem worse is that data is updated in an unpredictable manner.
We have to track all over our code to figure out how data is flowing and how
the application state is updated from multiple views. Also, adding a new
feature would be a challenge because you don ’ t know the impact of the new
feature on the application state.

Facebook had this problem before in 2014 and they introduced the Flux
architecture in response to it. Redux is a simplified, lightweight and elegant
implementation of the Flux architecture so that we can manage our
application state in a predictable way.

Benefits

Redux provides us with other benefits as well. Although Redux is often
linked to React for management of application state in React applications,
it ’ s a standalone library. This means that state management is decoupled
from the presentation framework e.g. React that we choose to use. We can
use Redux with other presentation works like Angular, Vue or any other
framework.

It also makes it easier for unit testing our application because Redux is
heavily based on functional programming. For example, in the below code,
we can unit test our adding and remove function that take in an existing state
and returns a new state.
function reducer(state, action) {

…
if (action.type === "ADD") {

const newPerson = {
id: action.personData.id,
name: action.personData.name,
age: action.personData.age

}
return {

...state,
persons: state.persons.concat(newPerson)

}
} else if (action.type === "REMOVE") {

return {
...state,

persons: state.persons.filter(person => person.id !==
action.personId)

}
} else {

return state;
}

}

Redux also makes it easier to implement undo and redo since all updates to
state are captured. These benefits of course come at a cost. We have to add
more code where there are more moving parts.

10.2 Transiting from Component States to Application
State
As a general principle, you should start simple and use local component state
first as introduced in this book. When your app grows, you can refactor
components to use Redux to manage application state in a predictable way.
For example, in a Facebook application, you might have the following local
component states initially:
App Component state:
loggedInUser: {

name: “…”
}

Messages Component state:
messages: {

{…},
{…},
{…}

}

Message Component state:
chatTabOpen: true

Posts Component state:
posts: {

{…},
{…},
{…}

}

Post Component state:
expanded: false

Each component mutates its own state with internal setState calls. But as the
app grows, it becomes difficult to determine the overall state of the
application, where updates are coming from, which messenger tabs are open,
which posts have been expanded etc. To find out, you have to traverse the

component tree and track the state of these individual components.

Redux makes it easier for us to view our application state by having us store
all state data in a single location called the Store. You can think of the store
as a single JS object that acts as a local client-side database. From the single
store, we manage the state of the current logged in user, messenger tabs open,
posts etc. For example:
App state{

loggedInUser: {
name: “…”

}

messages: {
{…},
{…},
{…}

}
chatTabOpen: [3,6]

posts: {
{…},
{…},
{…}

}
postsExpanded: [1]

}

Different views will then have different slices of the same store depending on
their functionality. If one component makes changes to the store, changes are
immediately visible to the other components. You don ’ t have to search
across multiple component states to find part of the state you want to update.
Also, all data is ensured to be in-sync in a single store.

In the coming sections, we will introduce a simple Persons management
application where we have person information stored in an array. A sample of
our state will look like:
{

persons: [
{id: 1, name: "Greg", age: 5},
{id: 2, name: "Carol", age: 3},
{id: 3, name: "Gabriel", age: 6},
{id: 4, name: "Fred", age: 8}

]
}

Having identified our application ’ s state structure, we will see how to
change this state via actions.

10.3 Understanding the Redux Flow
In a React app, there are components which want to manipulate the app state.
It doesn ’ t do that by manipulating the central giant JavaScript store object.
That would make our store unpredictable because if we can edit from
anywhere in our application, we would not know where we made a certain
change that broke our app for example. So, we need to have a clear and
predictable process of updating the state. Redux is all about having a clearly
defined process of how our state may change. We establish this predictable
process by flowing data from actions, to our reducer, to the store and
components subscribe to the store to receive state changes.

Actions

The first building block of Redux are actions which are dispatched by
components. Actions are simple data structures with no logic that describe
what to change. They contain a type string property which describes the kind
of action, something like ‘ Add Ingredient ’ or ‘ Remove Ingredient ’ .

Actions can also contain a ‘ payload ’ which contains the actual data for the
performing of the actions. For example, if an action is of type ‘ Add
Ingredient ’ , the action payload will be the information for the ingredient to
be added. If an action is of type ‘ Remove Ingredient ’ , the action payload
will be which ingredient to remove.

So, an action is simply an information package that we are sending to Redux.
It doesn ’ t directly change the store and doesn ’ t hold any logic. It is merely
a messenger of instructions about what should change in the application state
along with the necessary data to make those changes. We should emphasize
that in Redux, actions are the only way to update our state in Redux.

Reducers

The thing that changes the store is the reducer. The reducer will check the
type of the action and execute the logic for that kind of action and finally
update parts of the state.

A reducer is just a pure function which receives the action and the existing
state, and outputs a new updated state. Or in other words:
(state, action) => newState

We should emphasize that the existing state is never modified or mutated.
Rather, the reducer always returns a new state which replaces the old state in
the store. The logic in the reducer determines the final result of the updated
new state.

Store Subscriptions

Now that the central store is up to date, how do we communicate the updated
state back to our component? We use a subscription model. The store triggers
all subscriptions whenever the state changes. Our components can subscribe
to the updates and receive them automatically. We will see a sample
implementing of actions, reducers and store subscriptions in the next few
sections.

10.4 Setting Up Reducer and Store
For now, we will build a simple console app that has no UI to illustrate how
Redux works. Our app will allow you to add persons and remove persons.
The purpose of the app is not to show UI-rich apps like those we have built in
previous chapters, but to illustrate using simple code how Redux works. In
the next chapter, we will illustrate using Redux with React UI.

For simplicity, we won ’ t be using create-react-app to build a React project.
We will simply work with a single HTML file that references the Redux
library. We can later run the HTML file by opening it in our Chrome
browser.

First, in VSCode (or your favourite code editor), create a new file called
Persons.html and add in the following markup.
<!DOCTYPE html>
<html>

<head>
<title>List of Persons</title>
<script src="https://unpkg.com/redux@latest/dist/redux.js"></script>

</head>
<body>

<script>
</script>

</body>
</html>

What we have now is just a basic HTML file which references a hosted
version of the Redux library so that we can do away with the additional
Redux installation steps for now. This also shows that Redux can work
independent of React. In the next chapter, we will go through the actual
installation steps for Redux to connect to React. But for now, we just
reference the library directly.

10.5 Defining Actions
First, we define our actions. As mentioned, actions are the only way to
communicate with our store. Inside the script tag, add the following shown in
bold:

<body>
<script>

function addPerson(id,name,age) {
return {

type: "ADD",
personData: {

id: id,
name: name,
age: age

}
}

}

function removePerson(id) {
return {

type: "REMOVE",
personId: id

}
}

</script>
</body>

Our two functions addPerson and removePerson each return an action object.
Here, you see the action object consisting of a type property which describes
what kind of action we are performing. In our case, we have two action types
“ ADD ” and “ REMOVE ” . It ’ s up to you what description you want to
give.

Other than type, we have what we call the ‘ payload ’ value of the action. In
addPerson, our payload is

personData: {
id: id,
name: name,
age: age

}

In removePerson, our payload is just:
personId: id

addPerson has a personData object which in turn contains several properties
as its payload since we need these properties to describe the person we are
adding. removePerson however only requires id as payload since we only
need id to know which person to delete.

Both addPerson and removePerson have only one purpose which is to return
an action. These functions are formally known in Redux as ‘ Action
Creators ’ because they return action objects.

10.6 Reducer
Actions specify ‘ what ’ is to be done. ‘ How ’ it is done is left to the
reducer. The reducer acts as an intermediary between the store and actions.
To illustrate this, add the following reducer code below the action creator
functions.
const initialState = {

persons: []
};

function reducer(state, action) {
if (state === undefined) {

state = initialState;
}
if (action.type === "ADD") {

const newPerson = {
id: action.personData.id,
name: action.personData.name,
age: action.personData.age

}
return {

...state,
persons: state.persons.concat(newPerson)

}
} else if (action.type === "REMOVE") {

return {
...state,

persons: state.persons.filter(person => person.id !==
action.personId)

}
} else {

return state;
}

}

Code Explanation
const initialState = {

persons: []
};

function reducer(state, action) {
if (state === undefined) {

state = initialState;
}

Firstly, we initialize state to initialState (an empty persons array) if state is
undefined to begin with. This happens for example, when we launch our app
the first time. This ensures that we always have a state to work with.

The rest of the code is a series of if-else statements where we handle our
actions. The reducer method gets the action object which gives the reducer
access to the action type and payload.

Notice that each if-else clause caters to a particular action type and also
returns a new state. Very important to note is that reducers should never alter
its arguments, perform side effects like API calls, routing transitions or call
non-pure functions like Date.now() or Math.random(). Reducers should be
pure functions. That is, given the same arguments, it should always return the
same next state with no argument mutation. It should be a pure function
which always return the same result given the same arguments or in other
words, be predictable.

if (action.type === "ADD") {
const newPerson = {

id: action.personData.id,
name: action.personData.name,
age: action.personData.age

}

return {
...state,
persons: state.persons.concat(newPerson)

}
}

In the “ ADD ” clause above, notice that we don ’ t mutate the given persons
array using persons.push(). This would mutate the existing state. Instead, we
use ‘… state ’ to create a copy of the existing state and then replace the
existing persons array in it. The state.persons.concat method returns a new
array that contains the old values along with the added new person.

} else if (action.type === "REMOVE") {
return {

...state,
persons: state.persons.filter(person => person.id !==

action.personId)
}

}

When the action type is “ REMOVE ” , we return a new array with the
specified person removed using the filter method.

By now, you should understand that we shouldn ’ t be modifying state but
instead be returning a new one. Else, your Redux application will break.

} else {
return state;

}

Lastly, if we get any other action type, we return our current state unaltered.

10.7 Connecting Actions, Reducer and Store
Next, we create our store and tie our reducer function to it by adding the
below code to Persons.html:

var store = Redux.createStore(reducer);

We create a new store with Redux.createStore and provide our reducer as
argument. With this, we have linked our actions, reducers and store together.

To see how it all works together, we call the dispatch method of the store
object and provide it with an action as argument. Add the following codes:

store.dispatch(addPerson(1,"Greg",5));

store.dispatch(addPerson(2,"Carol",3));
store.dispatch(addPerson(3,"Gabriel",6));
store.dispatch(addPerson(4,"Fred",8));
store.dispatch(removePerson(4));

In the above code, each dispatch method sends the provided action to the
reducer which then goes through its logic and return a new state.

To see the store ’ s state each time the application state is modified, add the
following:

var store = Redux.createStore(reducer);
store.subscribe(showState);

function showState () {
console.log(store.getState());

}

store.getState returns the state ’ s value. We then enclose this into a showState
function which we provide as argument to store.subscribe. Stores allow us to
subscribe handler functions that will be called each time the store completes
dispatching an action. This will log the state ’ s value into the developer
console each time dispatch is called to fire an action (fig. 10.7.1).

Figure 10.7.1

In the above log, we can see our state after each dispatch. Particularly in the

fifth state, we see that “ Fred ” has been removed after removePerson(4) has
been dispatched.

In the next chapter, we will see how to connect React and Redux and provide
a real-world example.

CHAPTER 11: REACT WITH REDUX
In the last chapter, we learned about Redux and how to use it to manage an
application’s state data. In this chapter, we are going to combine React UI
with the Redux store. We will be creating a simple cart app which users can
add/remove products. The app will calculate the total cost of all the products
and also provide ‘Remove’ links for user to remove a product from the cart
(fig. 11.0.1).

Figure 11.0.1

First, we use create-react-app to create our app called reduxcart:
create-react-app reduxcart

Next, navigate to the reduxcart directory and install Redux and react-redux
dependencies with the following command:
npm install redux

npm install react-redux

react-redux is a framework used to integrate a Redux store with React
components. It provides us with the Provider component that we use to set up
our store as we will see soon.

11.1 Building our App
We will start with a clean project so that we do not have unnecessary files to
clutter our learning. Go to the src and public folders and delete all the files in
those folders. Then, in public folder, create a new file index.html with the

following HTML:

index.html
<!doctype html>
<html lang="en">

<head>
<title>Redux Cart</title>

</head>
<body>

<div id="container">
</div>

</body>
</html>

Next, in src folder create a new file index.js with the following codes:

index.js
import React, { Component } from "react";
import ReactDOM from "react-dom";
import { createStore } from "redux";
import { Provider } from "react-redux";
import cartReducer from "./reducer";
import App from "./App";
import 'bootstrap/dist/css/bootstrap.css';

var destination = document.querySelector("#container");

var store = createStore(cartReducer);

ReactDOM.render(
<Provider store={store}>

<App />
</Provider>,
destination

);

Code Explanation
var store = createStore(cartReducer);

First, we create our store with the createStore method that takes in our
reducer cartReducer as argument. We have imported cartReducer in the
above import statements and will be implementing that later.

<Provider store={store}>
<App />

</Provider>

We then pass in our store to the Provider component as a prop. The Provider
component has to be the enveloping outermost component to ensure that
every component has access to the Redux store.

reducer.js

Next in the src folder, create a file reducer.js with the following code:
// Reducer
// Reducer
function cartReducer(state, action) {

if (state === undefined) {
return {

totalCost: 0,
productCart: []

};
}

switch (action.type) {
case "addProduct":

return {
...state,
totalCost: state.totalCost+parseInt(action.productData.productPrice),
productCart: state.productCart.concat({

productName: action.productData.productName,
productPrice: action.productData.productPrice

})
}

case "deleteProduct":
const updatedArray = state.productCart.filter(product =>

product.productName !== action.productData.productName);
return{

...state,
totalCost: state.totalCost-parseInt(action.productData.productPrice),
productCart: updatedArray

}
default:

return state;
}

}

export default cartReducer;

Code Explanation

function cartReducer(state, action) {
if (state === undefined) {

return {
totalCost: 0,
productCart: []

};
}

First, we initialize our state to an empty productCart array and totalCost
being zero.

switch (action.type) {
case "addProduct":

return {
...state,
totalCost: state.totalCost+parseInt(action.productData.productPrice),
productCart: state.productCart.concat({

productName: action.productData.productName,
productPrice: action.productData.productPrice

})
}

case "deleteProduct":
const updatedArray = state.productCart.filter(product =>

product.productName !== action.productData.productName);
return{

...state,
totalCost: state.totalCost-parseInt(action.productData.productPrice),
productCart: updatedArray

}
default:

return state;
}

We use a switch statement to handle the two action types (addProduct and
deleteProduct) our reducer will receive. If the action type is addProduct, we
increment totalCost by the product price and return a new array with the
newly added product. If the action type is removeProduct, we subtract
product price from totalCost and return a new array with the target product
omitted.

Note that when we increment or decrement from totalCost, we have to use
the parseInt method to convert string to numeric. Else, you will get a string
with the numbers concatenated instead of added/subtracted.

App.js

In src folder, create a new file App.js with the following code:
import { connect } from "react-redux";
import Cart from "./Cart";

function mapStateToProps(state) {
return {

totalCost: state.totalCost,
productCart: state.productCart

}
}

function mapDispatchToProps(dispatch) {
return {

onAddProduct: (productName, productPrice) => dispatch({
type: "addProduct",
productData: {

productName: productName,
productPrice: productPrice

}}),
onDeleteProduct: (productData) => dispatch({

type: "deleteProduct",
productData: productData

})
}

}

var connectedComponent = connect(
mapStateToProps,
mapDispatchToProps

)(Cart);

export default connectedComponent;

Code Explanation

There are two main functions here, mapStateToProps and
mapDispatchToProps. As their names suggest, they connect to Redux and
provide these connections as props to our component.
function mapStateToProps(state) {

return {
totalCost: state.totalCost,
productCart: state.productCart

}
}

mapStateToProps subscribes to store updates and returns an object that

contains a slice of the store data that we wish to make available as props to
our component. In our case, we are making available totalCost and
productCart.
function mapDispatchToProps(dispatch) {

return {
onAddProduct: (productName, productPrice) => dispatch({

type: "addProduct",
productData: {

productName: productName,
productPrice: productPrice

}}),
onDeleteProduct: (productData) => dispatch({

type: "deleteProduct",
productData: productData

})
}

}

mapDispatchToProps provides our component with access to the action
creator functions that can be called to dispatch an action to the store. The
onAddProduct function dispatches an action with action type “addProduct”
and productData object as payload. The onDeleteProduct function similarly
dispatches an action with action type “deleteProduct” and productData as
payload. Both actions will be handled by the reducer we have created earlier
on.
var connectedComponent = connect(

mapStateToProps,
mapDispatchToProps

)(Cart);

We then connect mapStateToProps and mapDispatchToProps to our Cart
component so that it has access to totalCost, onAddProduct and
onDeleteProduct as props. This is done using the connect method shown
above.

The connect method returns a new higher order Cart component connected to
the Redux store. The higher order Cart component has added access to
actions and dispatch calls that connects to the Redux store. You can think of
it similar to extending an existing class. connect takes in mapStateToProps
and mapDispatchToProps function as arguments and passes them to the
extended Cart component. This is how a slice of the store and action creators
are made available to components in general. React handles these

automatically.

Cart.js

Now, we create our Cart component. In src folder, create a new file Cart.js
with the following code.
import React, { Component } from "react";
import AddProduct from './AddProduct';
import { Table } from 'reactstrap';

class Cart extends Component {
render() {

return (
<div className="container">

<AddProduct addProduct={this.props.onAddProduct}/>
<Table>

<thead>
<tr>

<th>Product Name</th>
<th>Product Price</th>
<th>#</th>

</tr>
</thead>
<tbody>

{this.props.productCart.map(productData => (
<tr key={productData.productName}>

<td>{productData.productName}</td>
<td>{productData.productPrice}</td>
<td onClick={() =>
this.props.onDeleteProduct(productData)}>Remove</td>

</tr>
))}

</tbody>
</Table>

Total Amount: {this.props.totalCost}
</div>

);
}
};

export default Cart;

Reactstrap CSS

To style our table, we use the Table component from the reactstrap library
(http://reactstrap.github.io/). Install reactstrap and peer dependencies via
NPM with the following command:

http://reactstrap.github.io/)

npm install --save reactstrap react react-dom

Reactstrap does not include Bootstrap CSS so this needs to be installed as
well:
npm install --save bootstrap

Props

The cart consists of a simple AddProduct form and a table which lists the
added products. We use the props sent from the connect HOC we
implemented earlier. this.props.onAddProduct,
this.props.onDeleteProduct(productData) functions are called when the add
button and remove buttons are clicked respectively. Note that
this.props.onAddProduct is passed as a prop addProduct to AddProduct
component. This allows the AddProduct child component to dispatch actions
to update application state directly instead of passing data back up the tree.
We will be looking at it later. Also, this.props.totalCost is used to display the
total cost.
<tbody>

{this.props.productCart.map(productData => (
<tr key={productData.productName}>

<td>{productData.productName}</td>
<td>{productData.productPrice}</td>
<td onClick={() =>

this.props.onDeleteProduct(productData)}>Remove</td>
</tr>

))}
</tbody>

We use the Table component from reactstrap to create a nice-looking table.
To populate table rows, we use the map function to populate each row with
product name and price. We also provide a ‘remove’ column which calls
props.onDeleteProduct which dispatches action of type deleteProduct to our
reducer to remove that product from the cart array.

AddProduct Component

Lastly, we create our AddProduct component (AddProduct.js) with the
following code:
import React, { Component } from "react";

class AddProduct extends Component {

state = {
productName: '',
productPrice: 0

}

productNameChangedHandler = (event) =>{
this.setState({productName: event.target.value});

}

productPriceChangedHandler = (event) =>{
this.setState({productPrice: event.target.value});

}

render() {
return (

<div className="container">
<input

type="text"
placeholder="Product Name"
onChange={this.productNameChangedHandler}
value={this.state.productName}

/>
<input

type="number"
placeholder="Product Price"
onChange={this.productPriceChangedHandler}
value={this.state.productPrice}

/>
<button className="buttons"

onClick={() => {
this.props.addProduct(this.state.productName,this.state.productPrice);

}}>Add Product</button>
</div>

);
}

};

export default AddProduct;

Our AddProduct component is a simple form. If the form code seems
unfamiliar to you, refer back to chapter six for a refresher on how React
forms work. Note that in AddProduct, we have both local component state
productName and productPrice which are used to store the values entered
into the input fields. So, you can have both local component states working in
conjunction with application wide Redux state. Local component states are
typically for use in the local component where other components do not
require access.

Finally, in the onClick handler of the button, we have our addProduct prop

which dispatches the addProduct action type to our reducer with the input
values from product name and product price fields. As mentioned earlier, this
is an example where we dispatch actions directly from child components to
update application state.

Running your app

If you run your app now, you should see your Cart working as expected. In
this chapter, we looked at how to connect Redux to React. We used react-
redux to help us connect the Redux store to the React presentation to create a
working app.

CHAPTER 12: FUNCTION OR CLASS-BASED

COMPONENTS? INTRODUCING HOOKS
The components we have so far gone through in this book are class-based
components that support state and life-cycle methods. There is another kind
of component called functional component that is defined by a function. E.g.
import React from 'react';

function App() {
return(

<div>
<h1>

My First React App!
</h1>

</div>
);

}

export default App;

So, should we use a functional-based component or class-based one?

Firstly, both are still React components. That is, a component can either be
implemented with a function, or with a class. Regardless of its
implementation, the purpose of a component is to ultimately produce HTML
to the user (via JSX). Its secondary purpose is to handle feedback from the
user, e.g. user clicks, typing of the keyboard.

One of the challenging things to do when first introduced to React is to
decide if she should use a class-based or functional-based component. It is
here that I wish to give you a general rule of thumb to one just beginning
React. Functional-based components are good for showing simple content to
the user without a lot of logic behind it. That is, you have some amount of
JSX and you can return it without much complicated processing.

Now, a class-based component is used generally if you have complex logic
e.g. you need to respond to user input, make network requests etc.

I personally enjoy working with class-based components but there are many
professional developers out there who would disagree with me. The
community around React is quite split on this topic. Some will say, I will try

to use as many functional components as I can, others will say, use class-
based components.

The advantages that class-based components give us include: they can access
component level ‘ state ’ , making it easier to handle input and update its
view with setState. Class-based components also provide lifecycle events e.g.
componentDidMount, componentDidUpdate thus making it easier to do some
tasks when the app first starts up.

Now what about functional-based components? They return JSX but don ’ t
really have state, lifecycle methods and thus don ’ t have much logic
associated with them. But React Hooks is going to change all that.

With Hooks, functional-based components can now have component level
state and life cycle methods. But is Hooks just about functional components
replicating functionality from class-based ones? If it were so, why not just
continue using class-based components?

What we are going to see in the following sections is that Hooks is going to
make it easier to share logic between different components which can be
hard to address using class-based components. Hooks in essence allow us to
re-use logic.

App Overview

To illustrate the usage of hooks, we will work on a new project. Create a new
project called hello_hooks with:
create-react-app hello_hooks

Our simple project will fetch data from https://jsonplaceholder.typicode.com/,
a fake online REST API for testing and prototyping (fig. 12.1).

https://jsonplaceholder.typicode.com/

Figure 12.1

Our app will have two button links to retrieve posts and todos (fig. 12.2).

Figure 12.2

Because we will be using react-bootstrap, run:
npm install react-bootstrap bootstrap

Class-based Component

In App.js, suppose we have the below simple class-based component.
import React from 'react';
import 'bootstrap/dist/css/bootstrap.min.css';
import { Button } from 'react-bootstrap';

class App extends React.Component{
state = { requested: '' };

render(){
return(

<div>
<Button variant="link" onClick={() => this.setState({

requested: 'https://jsonplaceholder.typicode.com/posts'
})}>

Posts
</Button>
<Button variant="link" onClick={() => this.setState({

requested: 'https://jsonplaceholder.typicode.com/todos'
})}>

Todos
</Button>

Requested: {this.state.requested}

</div>
)

}
}

export default App;

Our component shows two buttons with each setting requested in state to
either a posts url or todos url. requested thus shows what resource we are
currently requesting.

Reconverting a Class to a Function
Now, we will make use of hooks to refactor this to a functional component
with a state.

Before we refactor, let ’ s first have a quick introduction to the different
functions the hook system provides. The hook library provides the following
functions:

useState – allows a functional component to use component level state
useEffect – allows a functional component to use life cycle methods
useContext – allows a functional component to use context system.
useRef – allows a functional component to use Ref to make reference to a
DOM element

In this chapter, we will cover on useState and useEffect.

To converting our class compoment to a functional component, in App.js,
change it to the following:
import React, { useState } from 'react';
import 'bootstrap/dist/css/bootstrap.min.css';
import { Button } from 'react-bootstrap';

const App = () => {

const postsUrl = "https://jsonplaceholder.typicode.com/posts"
const todosUrl = "https://jsonplaceholder.typicode.com/todos"
const [requested, setRequested] = useState(postsUrl)

return(
<div>

<Button variant="link" onClick={() => setRequested(postsUrl)}>
Posts

</Button>
<Button variant="link" onClick={() => setRequested(todosUrl)}>

Todos
</Button>

Requested: { requested }

</div>
)

}

export default App;

Code Explanation
import React, { useState } from 'react';

Firstly, we import useState from the react library as we will be using it for
hooks. The rest of the import statements remain the same as the class
component.
const App = () => {

We then have the declaration of the function App.
const [requested, setRequested] = useState(postsUrl)

The above is a crucial line where most of our explanation will go into. As
mentioned, the useState provides state to a functional component. The above
line is saying that we have a variable requested in our state, and we set its
initial value to postsUrl. This line is the same as state = { requested: postsUrl
} in our class component.

And setRequested is the setter method to update the value of this piece of
state. That is, setRequested(postsUrl) is the same as this.setState({requested:
postsUrl })} in the class component.

This is shown in the Button ’ s onClick, where you have:
<Button variant="link" onClick={() => setRequested(postsUrl)}>

Posts
</Button>

which is the same as:

<Button variant="link" onClick={() => this.setState({requested:postsUrl})}>
Posts

</Button>

in the class component.

Technically, in:
const [requested, setRequested] = useState(postsUrl)

useState returns two elements. The first element returned is assigned to
requested which contains the current value of this piece of state. The second
element returned is assigned to setRequested which is the setter to update this
piece of state.

So previously in our class component, our state is an object with values in it.
i.e.

state = { requested: postsUrl };

But with the useState hook, we declare a value in our state one at a time i.e.
const [requested, setRequested] = useState(postsUrl)

In hooks, we move away from declaring an object containing all of our state
to declaring the individual state variables themselves. For example, suppose
we want a counter in our state. In a class component, it would be:

state = {
requested: postsUrl,
count: 0

};

But for states in a functional component, it would look like:
const App = () => {

const [requested, setRequested] = useState(postsUrl)
const [counter, setCounter] = useState(0)
…

And just as setState re-renders a class component each time it is called; in

functional components, each time a setter, i.e. setRequested or setCounter is
called, the functional component will be re-rendered.

Data Fetching with useEffect
In class components, we would typically do data fetching in
componentDidMount. We illustrated that in chapter nine where we requested
for users ’ data.

Now, how do we achieve the same effect for componentDidMount in
functional components? That ’ s where useEffect comes in. useEffect serves
the same prupose as componentDidMount, componentDidUpdate and
componentWillUnmount in functional components but unified as a single
function.

Thus, we put the request data logic into useEffect as shown:
import React, { useState, useEffect } from 'react';
…
const App = () => {

const postsUrl = "https://jsonplaceholder.typicode.com/posts"
const todosUrl = "https://jsonplaceholder.typicode.com/todos"

const [requested, setRequested] = useState(postsUrl)
const [data, setData] = useState([])

useEffect(() =>{
fetch(requested)

.then(response => response.json())

.then(data => setData(data))
},[])

return(
…

)
}
export default App;

Code Explanation
import React, { useState, useEffect } from 'react';

We first import useEffect from the react library.
const [data, setData] = useState([])

We also declare an array data that holds the requested data in our state. We
initialize data to an empty array [] .

useEffect(() =>{
fetch(requested)

.then(response => response.json())

.then(data => setData(data))
},[])

And we call useEffect like the above. Note that instead of calling
this.setState({data: data}), we use setData(data).

Now, why is there an empty array fed into the second argument of useEffect?
Remember that useEffect serves the same purpose as componentDidMount,
componentDidUpdate and componentWillUnmount. But how do we
differentiate the use of useEffect between the three?

Infinite useEffect

If we implement useEffect without specifying the 2nd parameter, i.e.:
useEffect(() =>{

fetch(requested)
.then(response => response.json())
.then(data => setData(data))

})

It is then equivalent to componentDidUpdate., which runs every time the
component gets new props, or a state change happens.

That is, if you run the app now, and you go to your ‘ Network ’ tab under the
Chrome Developer Tools, you can see that the request to posts is being sent
repeatedly in an infinite loop (fig. 12.3)!

Figure 12.3

This is because useEffect does the request and then updates the state with
setData, which thus calls useEffect again!

Thus, to mimic componentDidMount, we have to pass in an empty array as a
second argument to useEffect where the request will be made only once.

useEffect(() =>{
fetch(requested)

.then(response => response.json())

.then(data => setData(data))
},[])

Displaying our Requested Data

To render our requested data, add in the below map function:
return(

<div>
<Button variant="link" onClick={() => setRequested(postsUrl)}>

Posts
</Button>

<Button variant="link" onClick={() => setRequested(usersUrl)}>
Todos

</Button>

Requested: { requested }

{data.map(el =>(
<li key={el.id}>{el.title}

))}

</div>
)

And when we run our app, the lists of requested post titles should appear (fig.
12.4):

Figure 12.4

Another Problem

We now meet with another problem however, when we click on ‘ Todos ’ , it
should list out the todos also, but it doesn ’ t! Why is that? That is because
useEffect is called only once because we have configured it to be just like
componentDidMount. When we click on the ‘ Todos ’ , useEffect does not
get called again just as componentDidMount. What we want to achieve now
is that whenever the value of requested in useEffect changes (i.e. from
postsUrl to todosUrl), we want to call useEffect again. But if the requested
doesn ’ t change, don ’ t do anything.

To achieve that, we simply specify the requested into the array:
useEffect(() =>{

fetch(requested)
.then(response => response.json())
.then(data => setData(data))

},[requested])

And now, whenever requested changes in value, useEffect will be called. So,
if you run your app now, when you click on Todos, it will be able to request
todos as well.

Do note that todos can display without any problems because it also has the
id and title attribute.

{data.map(el =>(

<li key={el.id}>{el.title}
))}

Extractable Reusable Logic
Now, we come to the section that makes React hooks really useful. We can
encapsulate our logic in a React hook and then import that hook when we
want to use it. For example, we will encapsulate our request logic in a hook.
First, create a new file useFetch.js. Note that the filename containing a hook
starts with a lower case. This is the general convention for hooks. Whereas
for filenames containing components, it starts with an upper case e.g. App.js.

So in useFetch.js, move our useEffect code there like the below:

useFetch.js
import { useState, useEffect } from 'react';

const useFetch = (url) => {
const [data, setData] = useState([])

useEffect(() =>{
fetch(url)

.then(response => response.json())

.then(data => setData(data))
},[url])

return data
}

export default useFetch;

And to use our newly custom created useFetch hook in App.js, make the

below code changes:

App.js
import React, {useState, useEffect} from 'react';
…
import useFetch from './useFetch'

const App = () => {

const postsUrl = "https://jsonplaceholder.typicode.com/posts"
const todosUrl = "https://jsonplaceholder.typicode.com/todos"

const [requested, setRequested] = useState('posts')
const [data, setData] = useState([])
const data = useFetch(requested)

useEffect(() =>{
fetch(requested)

.then(response => response.json())

.then(data => setData(data))
},[requested])

return(
…

)
}

export default App;

Just the above few lines of code changes are needed. And the output remains
the same. This is what make hooks so attractive. We can encapsulate logic
into their own functions that other components can re-use. It makes it easier
to reuse logic between components. Also, our code in App.js is cleaner and
leaner.

This might not seem as a big improvement, but it actually is because
useFetch has no tie to any specific component. We can reuse useFetch in any
other component. For e.g. if we want to request users from
https://jsonplaceholder.typicode.com/users, we can just pass in that route and
get back the response from that end point.

Let ’ s illustrate this by fetching users and print out their name with our
newly created useFetch hook. Create a new file Users.js with the following
code:
import React from 'react'

import useFetch from './useFetch'

const Users = () => {
const users = useFetch("https://jsonplaceholder.typicode.com/users")

return(

{users.map(el =>(//
<li key={el.id}>{el.name}>

))}

)
}

export default Users

And then in App.js, we render the Users component with:
…
import Users from './Users'

const App = () => {

…
return(

<div>
<Users />
<Button variant="link" onClick={() => setRequested(postsUrl)}>

Posts
</Button>

….

By re-using the useFetch hook, we didn ’ t have to write a single link of code
around making a request inside of the Users component. We just have:

const users = useFetch("https://jsonplaceholder.typicode.com/users")

We didn ’ t have to re-code any network request logic. So, this is an example
of how to construct hooks and re-use logic between components.

Summary
With this knowledge, you can move on and build more complicated
enterprise-level fully functional React applications of your own!

Hopefully, you have enjoyed this book and would like to learn more from
me. I would love to get your feedback, learning what you liked and didn't for
us to improve.

Please feel free to email me at support@i-ducate.com if you encounter any
errors with your code or to get updated versions of this book. Visit my
GitHub repository at https://github.com/greglim81 if you have not already
have the full source code for this book.

This book has largely focused on React development through class
components. I have written a separate book (“ Beginning React with
Hooks ” , https://www.amazon.com/dp/B088ZT9P36/) which brings you
through React development using function components.

If you have bought this book but also want to get up to speed with React
development using Hooks, just drop me a mail at support@i-ducate.com and
I will give you a complimentary copy of “ Beginning React with Hooks ” as
a way to expressing my thanks to you for purchasing this book.

Thank you and all the best for your learning journey in React!

mailto:support@i-ducate.com
https://github.com/greglim81
mailto:support@i-ducate.com

ABOUT THE AUTHOR

Greg Lim is a technologist and author of several programming books. Greg
has many years in teaching programming in tertiary institutions and he places

special emphasis on learning by doing.

Contact Greg at support@i-ducate.com.

mailto:support@i-ducate.com

	Preface
	Chapter 1: Introduction
	Chapter 2: Creating and Using Components
	Chapter 3: Bindings, Props, State and Events
	Chapter 4: Working with Components
	Chapter 5: Conditional Rendering
	Chapter 6: Building Forms using Formik
	Chapter 7: Getting Data From RESTful APIs with Axios
	Chapter 8: Routing
	Chapter 9: C.R.U.D. with Firebase
	Chapter 10: Introduction to Redux
	Chapter 11: React with Redux
	Chapter 12: Function or Class-based Components? Introducing Hooks
	About the Author

