

Beginning
MERN Stack

(MongoDB, Express,
React, Node.js)

Greg Lim
Copyright © 2021 Greg Lim

All rights reserved.

COPYRIGHT © 2021 BY GREG LIM

ALL RIGHTS RESERVED.
NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM

OR BY ANY ELECTRONIC OR MECHANICAL MEANS INCLUDING

INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT

PERMISSION IN WRITING FROM THE AUTHOR. THE ONLY

EXCEPTION IS BY A REVIEWER, WHO MAY QUOTE SHORT

EXCERPTS IN A REVIEW.

FIRST EDITION: JUNE 2021

Table of Contents
PREFACE

CHAPTER 1: INTRODUCTION

CHAPTER 2: MONGODB OVERVIEW

CHAPTER 3: SETTING UP MONGODB ATLAS CLOUD DATABASE

CHAPTER 4: ADDING SAMPLE DATA

CHAPTER 5: SETTING UP OUR NODE.JS, EXPRESS BACKEND

CHAPTER 6: CREATING OUR BACKEND SERVER

CHAPTER 7: CREATING THE MOVIES DATA ACCESS OBJECT

CHAPTER 8: CREATING THE MOVIES CONTROLLER

CHAPTER 9: TESTING OUR BACKEND API
CHAPTER 10: LEAVING MOVIE REVIEWS

CHAPTER 11: TESTING THE REVIEWS API
CHAPTER 12: ROUTE TO GET A SINGLE MOVIE AND ITS RATINGS

REACT FRONTEND

CHAPTER 13: INTRODUCTION TO REACT

CHAPTER 14: CREATE NAVIGATION HEADER BAR

CHAPTER 15: DEFINING OUR ROUTES

CHAPTER 16: MOVIEDATASERVICE: CONNECTING TO THE BACKEND

CHAPTER 17: MOVIESLIST COMPONENT

CHAPTER 18: MOVIE COMPONENT

CHAPTER 19: LISTING REVIEWS

CHAPTER 21: ADDING AND EDITING REVIEWS

CHAPTER 22: DELETING A REVIEW

CHAPTER 23: GET NEXT PAGE ’ S RESULTS

CHAPTER 24: GET NEXT PAGE ’ S RESULTS – SEARCH BY TITLE AND

RATING

CHAPTER 25: DEPLOYING BACKEND ON HEROKU

CHAPTER 26: HOSTING AND DEPLOYING OUR REACT FRONTEND

ABOUT THE AUTHOR

PREFACE

About this book
In this book, we take you on a fun, hands-on and pragmatic journey to
learning MERN stack development. You'll start building your first MERN
stack app within minutes. Every chapter is written in a bite-sized manner and
straight to the point as I don’t want to waste your time (and most certainly
mine) on the content you don't need. In the end, you will have the skills to
create a Movies review app and deploy it to the Internet.

In the course of this book, we will cover:
- Chapter 1: Introduction
- Chapter 2: MongoDB Overview
- Chapter 3: Setting Up MongoDB Atlas Cloud Database
- Chapter 4: Adding Sample Data
- Chapter 5: Setting Up Our Node.js, Express Backend
- Chapter 6: Creating Our Backend Server
- Chapter 7: Creating The Movies Data Access Object
- Chapter 8: Creating The Movies Controller
- Chapter 9: Testing Our Backend API
- Chapter 10: Leaving Movie Reviews
- Chapter 11: Testing The Reviews API
- Chapter 12: Route To Get A Single Movie And Its Ratings
- Chapter 13: Introduction To React
- Chapter 14: Create Navigation Header Bar
- Chapter 15: Defining Our Routes
- Chapter 16: MovieDataService: Connecting To The Backend
- Chapter 17: MoviesList Component
- Chapter 18: Movie Component
- Chapter 19: Listing Reviews
- Chapter 21: Adding And Editing Reviews
- Chapter 22: Deleting A Review
- Chapter 23: Get Next Page ’ s Results
- Chapter 24: Get Next Page ’ s Results – Search By Title And Rating
- Chapter 25: Deploying Backend On Heroku
- Chapter 26: Hosting And Deploying Our React Frontend

The goal of this book is to teach you MERN stack development in a
manageable way without overwhelming you. We focus only on the essentials
and cover the material in a hands-on practice manner for you to code along.

Working Through This Book

This book is purposely broken down into short chapters where the
development process of each chapter will center on different essential topics.
The book takes a practical hands on approach to learning through practice.
You learn best when you code along with the examples in the book.

Requirements
No previous knowledge on Node.js or React development is required, but you
should have basic programming knowledge. It will be a helpful advantage if
you could read through my Node, Express book and React book first which
will provide you will better insight and deeper knowledge into the various
technologies. But even if you have not done so, you should still be able to
follow along.

Getting Book Updates
To receive updated versions of the book, subscribe to our mailing list by
sending a mail to support@i-ducate.com. I try to update my books to use the
latest version of software, libraries and will update the codes/content in this
book. So, do subscribe to my list to receive updated copies!

Code Examples
You can obtain the source code of the completed project at
www.greglim.co/p/mern.

https://www.amazon.com/dp/B07TWDNMHJ/
https://www.amazon.com/dp/B077D5212Q/
mailto:support@i-ducate.com

CHAPTER 1: INTRODUCTION

Welcome to Beginning MERN Stack! This book focuses on the key tasks and
concepts to get you started to learn and build MERN stack applications in a
faster pace. It is designed for readers who don ’ t need all the details about
MERN at this point in the learning curve but concentrate on what you really
need to know.

So what ’ s the MERN stack? The MERN stack is a popular stack of
technologies for building a modern Single Page Application. MERN stands
for MongoDB, Express, React and Node.js:

- Node.js is one of the most popular server-side frameworks that allow
us to execute JavaScript code in a web server.

- Express is a web application framework for Node.js which makes
application development in Node easier and faster. Node and Express
together form the middle-tier web server of the stack.

- MongoDB is a NoSQL database which stores data persistently in the
form of collections and documents.

- React is a JavaScript frontend library to build user interfaces.

MERN is derived from the popular MEAN stack (MongoDB, Express,
Angular, Node) where instead of using the Angular frontend framework, we
use React. Another popular variant is the MEVN where we use Vue as the
frontend. These frontends make up Single Page Applications (SPAs) which
avoid reloading the page entirely and just fetches relevant portions of the
page from the server to display new content.

The App We Will Be Building

We will build a Movie reviews app which lets users view and search for
movies. They can also log in and post reviews on the movies (fig. 1a, 1b, 1c).

Figure 1a – Home Page with search functionality

Figure 1b – Movie page listing reviews

Figure 1c – Create Review

Users can see the list of reviews in a Movie ’ s page and post/edit/delete their
own review if they are logged in. They will not be able edit/delete other ’ s
reviews though. Through this app, we will learn a lot of concepts and solidify
our Node.js, Express, React and MongoDB knowledge.

We will first talk about MongoDB and how to host our database in the cloud
using MongoDB Atlas. We will then create the backend of the app using
Node.js and Express. Our server will interact with the database using the
native MongoDB JavaScript library. After that, we will create the frontend
with React and connect the frontend to the backend to complete our MERN
stack app. In the last chapter, we will deploy our Node, Express backend on
Heroku, and React frontend on Netlify, to run both backend and frontend in
the cloud.

So, the overall structure of our app will be:
- the ‘ M ’ of the stack, MongoDB will be hosted on MongoDB Atlas
- the ‘ E ’ and ‘ N ’ , Express and Node runs the backend server

(Express being part of Node) and exposes an API. Hosted on Heroku
- the ‘ R ’ , React frontend calls the API and renders the user interface

on the client ’ s browser. Hosted on Netlify.

We will begin by going through the MongoDB database layer in the next
chapter.

CHAPTER 2: MONGODB OVERVIEW

As indicated by the ‘ M ’ in MERN, we will use MongoDB as the backend
database for our app. MongoDB is a NoSQL database. Before we talk about
what is a NoSQL database, let ’ s first talk about relational databases so that
we can provide a meaningful contrast. If you have not heard of a relational
database before, you can think of relational databases like spreadsheets where
data is structured and each entry is generally a row in a table. Relational
databases are generally controlled with SQL or Structured Query Language.
Examples of popular relational databases are MySQL, SQL Server and
PostgreSQL.

NoSQL databases in contrast are often called non-relational databases, where
NoSQL means anything that isn ’ t an SQL (see how it infers the popularity
of SQL?). It might seem like NoSQL is a protest over SQL but it actually
refers to a database not structured like a spreadsheet, i.e. less rigid than SQL
databases.

The architecture of MongoDB is a NoSQL database which stores information
in the form of collections and documents. MongoDB stores one or more
collections. A collection represents a single entity in our app, for example in
an e-commerce app, we need entities like categories, users, products. Each of
these entities will be a single collection in our database.

If we were to map similar concepts in relational databases and MongoDB:
- a table in a relational database would compare to a collection in

MongoDB.
- each row in a table (in a relational database) can be thought of as a

document in a collection (in MongoDB).
- a join operation in SQL can be done with $lookup in MongoDB.
- instead of foreign keys, we utilize reference in MongoDB.

In MongoDB, a collection contains documents. A document is an instance of
the entity containing the various relevant field values to represent the
document. For example, a product document will contain title, description
and price fields. Each field is a key-value pair e.g. price: 26, title: "Learning Node" .

Documents look a lot like JSON objects with various properties (though they
are technically Binary JSON or BSON). An example of a collection-
document tree is shown below:
Database

→ Products collection
→ Product document

{
price: 26,
title: "Learning Node",
description: "Top Notch Development book",
expiry date: 27-3-2020

}
→ Product document
…

→ Users collection
→ User document

{
username: "123xyz",
contact:

{
 phone: "123-456-7890",
 email: "xyz@example.com"
}

}
→ User document
…

You can see in the above that we have a variety of relationships. A user has a
username and contact. Within contact, you have phone and email. The BSON
format provides for a wide variety of support for data types like strings,
integers etc.

Let ’ s create our database in the next chapter.

CHAPTER 3: SETTING UP MONGODB
ATLAS CLOUD DATABASE
The fastest and easiest way to get started with MongoDB is by using its cloud
service MongoDB Atlas to host our database on the cloud. One way of
setting up MongoDB is by running MongoDB on a local machine for
development and testing. But MongoDB Atlas makes things a lot easier even
if we are just doing a local project. Also, our entire backend and frontend will
eventually be deployed to the cloud anyway.

First, sign up for a MongoDB Atlas account
(https://www.mongodb.com/download-center). Under 'Deploy a free cluster',
create a new account and click ‘ Get started free ’ (fig. 1).

Figure 1

You will be brought to a ‘ Build a New Cluster ’ page. Under ‘ Global
Cluster Configuration ’ , choose ‘ AWS ’ as cloud provider (because they
provide a free account without having to enter credit card details). Under
‘ North America ’ , select ‘ North Virginia ’ where we can get a free tier for
our MongoDB (fig. 2).

Figure 2

Next under 'Cluster Tier', choose the ‘ M0 ’ free tier (fig. 3).

Figure 3

The good thing about Amazon AWS is that we can experiment without

having to worry about making unintentional mistakes and getting a huge bill
from Amazon. When your website gets more popular with more users, you
can then scale up at a later stage. Keep the other default options and select
'Create Cluster.' It will prompt you saying that it takes 7-10 minutes to set up
everything on AWS (fig. 4).

Figure 4

Next, in the left panel, under ‘ Security ’ , click on ‘ Database Access ’
where you do not yet have a user. Create a database user by clicking on
‘ Add New User ’ (fig. 5) and provide him with ‘ Read and write to any
database privileges ’ .

Figure 5

Next, under ‘ Security ’ , ‘ Network Access ’ , ‘ IP Whitelist ’ , select
‘ Add IP Address ’ and choose ‘ allow access from anywhere ’ (fig. 6). This
will allow our app to be accessible from anywhere in the Internet.

Figure 6

We will later revisit the MongoDB site to retrieve the connection string to
connect MongoDB and our Node.js backend. For now, let ’ s add some
sample data to our database.

CHAPTER 4: ADDING SAMPLE DATA
One thing great about MongoDB is when you want some dummy data to try
things out, you don ’ t have to painstakingly generate your own data.
MongoDB provides a lot of sample data for us. In the MongoDB Cluster,
click on the three dots ‘…’ and select ‘ Load sample Dataset ’ (fig. 1). This
will load a sample dataset into your cluster.

Figure 1

To see the sample data, click on ‘ Collections ’ , and you see a list of sample
databases e.g. ‘ sample_mflix ’ , ‘ sample_analytics ’ (fig. 2).

Figure 2

In our app, we will use the ‘ sample_mflix ’ data. sample_mflix contains
movies ’ data (fig. 3).

Figure 3

For example, in the first listing, we have the ‘ The Poor Little Rich Girl ’
movie. We have the movie ’ s runtime, title, plot, year and more. We will use
these data in our app.

Having loaded our sample data, let ’ s start creating our backend in the next
chapter.

CHAPTER 5: SETTING UP OUR NODE.JS,
EXPRESS BACKEND
In this chapter, we begin setting up the backend of our app with Node.js and
Express. First, we will install Node.js. Go to nodejs.org (fig. 1) and download
the appropriate version for your Operating System.

Figure 1

Installation should be straightforward. Once Node.js has been installed, go to
your Terminal and run:
node -v

This shows the version of Node that you installed e.g. v14.16.0 (at time of
this book ’ s writing).

Creating the Backend folder

In Terminal, in a location of your choice, create a folder called ‘ movie-

reviews ’ e.g.:
mkdir movie-reviews
cd movie-reviews

In the movie-reviews folder, create a folder called ‘ backend ’ :
mkdir backend
cd backend

In the backend folder, create a package.json file in the folder by running:
npm init

This will prompt a series of questions about our project (e.g. project name,
author, version) to create package.json for us. You can of course manually
create package.json on your own. But npm init saves us a bit of time when
creating package.json files. For now, just press enter for all the questions and
at the end, package.json (with the contents something like the below) will be
generated for us.
{

"name": "backend",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC"

}

package.json contains metadata about our Node project like the name,
version and its authors.

Next, install a few dependencies by running:
npm install express cors mongodb dotenv

As mentioned, Express is a framework that acts as a light layer atop the
Node.js web server making it easier to develop Node.js web applications. It
simplifies the APIs of Node.js, adds helpful features, helps organizes our
application ’ s functionality with middleware and routing and many others.

CORS stands for Cross-Origin Resource Sharing. By default, modern

browsers don ’ t allow frontend clients to talk to REST APIs. They block
requests sent from clients to the server as a security mechanism to make sure
that client-side browser JavaScript code can only talk to their own allowed
server and not to some other servers which can potentially run malicious
code. To circumvent this security mechanism, we can enable CORS
checking, a mechanism that uses additional HTTP headers to tell browsers to
give a web application running at one origin, access to selected resources
from a different origin.
The cors package we are installing provides an Express middleware that can
enable CORS with different options so we can make the right connections on
the network.

The mongodb dependency allows us to interact with our MongoDB database.

The dotenv dependency loads environmental variables from the process.env
file instead of setting environment variables on our development machine
which simplifies development. We will understand this better when we create
the process.env file later.

When installation of the above dependencies is finished, you will notice that
a new property dependencies has been added to package.json.
{

"name": "backend",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC",
"dependencies": {

"cors": "^2.8.5",
"dotenv": "^8.2.0",
"express": "^4.17.1",

"mongodb": "^3.6.6"
}

}

Dependencies contain the dependency packages and their version numbers.
For example, we have Express version 4.17.1 (at time of book ’ s writing).

Each time we install a package, npm saves it here to keep track of the
packages used in our app.

npm install installs the specified packages into our app by fetching their latest
versions and putting them in a folder called node_modules. Open up the
backend folder in a code editor of your choice. In this book, I will be using
Visual Studio Code (https://code.visualstudio.com/).

If you look at your app folder, the node_modules folder will have been
created for you (fig. 2). This is where custom dependencies are saved for our
project.

Figure 2

If you open and explore node_modules, you should be able to locate the
installed packages. The reason why we see many other packages in
node_modules is because our specified packages depend on these other
packages and they were thus also installed. The file package-lock.json tracks
the versions of all the dependencies of Express.

Automatic Server Restart with nodemon

Next, we will install a package called nodemon
(https://www.npmjs.com/package/nodemon) that automatically detects code
changes and restart the Node server so we don ’ t have to manually stop and

restart it whenever we make a code change. Install nodemon with the
following command:
npm install -g nodemon

And nodemon will be installed globally to our system path.

CHAPTER 6: CREATING OUR BACKEND

SERVER
Now, its time to create the backend server! But before we do, because we are
using ES6 ’ s import statement, add into package.json the below line:
{

"name": "backend",
"version": "1.0.0",
"description": "",
"main": "index.js",
"type": "module",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},

…

That will use the import statements from ES6.

Now, in the backend folder, create a new file server.js with the following
code:
import express from 'express'
import cors from 'cors'
import movies from './api/movies.route.js'

const app = express()

app.use(cors())
app.use(express.json())

app.use("/api/v1/movies", movies)
app.use('*', (req,res)=>{

res.status(404).json({error: "not found"})
})

export default app

Code Explanation
import express from 'express'
import cors from 'cors'
import movies from './api/movies.route.js'

We first import the express and cors middleware. We also import
movie.route.js which is a separate file we will create later to store our routes.

We then create the server with:
const app = express()

We attach the cors and express.json middleware that express will use with:
app.use(cors())
app.use(express.json())

express.json is the JSON parsing middleware to enable the server to read and
accept JSON in a request ’ s body.

Note: Middleware are functions that Express executes in the middle after the
incoming request and before the output. Middlewares might make changes to
the request and response objects. The use function registers a middleware
with our Express app. With app.use(express.json()), the express.json()
middleware let ’ s us retrieve data from a request via the body attribute. We
shall see this in code later on.
Without this middleware, data retrieval would be much more difficult.

We then specify the initial routes:
app.use("/api/v1/movies", movies)
app.use('*', (req,res)=>{

res.status(404).json({error: "not found"})
})

The general convention for API urls is to begin it with: /api/<version
number>. And since our API is about movies, the main URL for our app will
be i.e. localhost:5000/api/v1/movies. The subsequent specific routes are
specified in the 2nd argument movies.

If someone tries to go to a route that doesn't exist, the wild card route
app.use(‘ * ’) returns a
404 page with the 'not found' message.
export default app

We then export app as a module so that other files can import it e.g. the file
that accesses the database and starts the server. This allows us to separate our
main server code from our database code.

Storing Environment Variables

Before we create the file that connects to the database and starts the server,
we will create the env file to store our environment variables. Create a new
file .env. This is where we will set the URI of our database. To get the URI,
we have to go back to MongoDB Atlas. Once there, click on connect (fig. 1).

Figure 1

Under ‘ Choose a connection method ’ , choose ‘ connect your application ’
and copy the URL (fig. 2).

Figure 2

Go back to the .env file and declare a variable MOVIEREVIEWS_DB_URI
and assign the copied URL to it as shown in the following code:

MOVIEREVIEWS_DB_URI=mongodb+srv://newuser1:pwd123@cluster0.vxjpr.mongodb.net/sample_mflix
retryWrites=true&w=majority

Make sure in the connect string that you have filled in your own username
(e.g. ‘ newuser1 ’), password (e.g. ‘ pwd123 ’) and database name
(‘ sample_mflix ’).

We will create another two variables in .env:
MOVIEREVIEWS_NS=sample_mflix // our database name
PORT=5000 // starting port of server

Connecting to Database and Start Server - index.js
Next in backend, create a new file index.js. In it, we will connect to the
database and start the server. Fill in index.js with the following:
import app from './server.js'

import mongodb from "mongodb"
import dotenv from "dotenv"

async function main(){

dotenv.config()

const client = new mongodb.MongoClient(
process.env.MOVIEREVIEWS_DB_URI

)
const port = process.env.PORT || 8000

try {
// Connect to the MongoDB cluster
await client.connect()

app.listen(port, () =>{
console.log('server is running on port:'+port);

})

} catch (e) {
console.error(e);
process.exit(1)

}
}

main().catch(console.error);

Code Explanation
import app from './server.js'
import mongodb from "mongodb"
import dotenv from "dotenv"

First, we import app that we have previously created and exported in
server.js. We import mongodb to access our database and dotenv to access
our environment variables.
async function main(){

…
}

We create an asynchronous function main() to connect to our MongoDB
cluster and call functions that access our database.

In main, we call dotenv.config() to load in the environment variables.
const client = new mongodb.MongoClient(process.env.MOVIEREVIEWS_DB_URI)

In the above, we create an instance of MongoClient and pass in the database
URI.
const port = process.env.PORT || 8000

We retrieve the port from our environment variable. If we can ’ t access it, we
use port 8000.

await client.connect()

In the try block, we then call client.connect to connect to the database.
client.connect() returns a promise. We
use the await keyword to indicate that we block further execution until that
operation has completed.

After connecting to the database and there are no errors, we then start our
web server with:

app.listen(port, () =>{
console.log('server is running on port:' + port);

})

app.listen starts the server and listens via the specified port. The callback
function provided in the 2nd argument is executed when the server starts
listening. In our case, when the server starts, it logs a message ‘ server is
running in port 5000 ’ for example.

We wrap our calls to functions that interact with the database in a try/catch
statement so that we handle
any unexpected errors.
main().catch(console.error);

With the main() function implemented, we then call it and send any errors to
the console.

We can then test the backend server. But first, we need to make a route.

Creating our first route

In the backend folder, create a new directory called api. In it, create a new
file movies.route.js. We have referenced this in server.js. Fill it in with the
following:

import express from 'express'

const router = express.Router() // get access to express router

router.route('/').get((req,res) => res.send('hello world'))

export default router

Code Explanation

movies.route.js will contain routes that different people can go to. For now,
we just have one route ‘ / ’ acting as a demonstration. We will add more
routes later. So, if you go to localhost:8000/api/v1/movies, you should get a
response with 'hello world'. This is because in server.js, we imported
movies.route.js and specified the following path:
import movies from './api/movies.route.js'

…
app.use("/api/v1/movies", movies)
…

Thus, every route in movies will start with /api/v1/movies.

Running our App

In Terminal, cd to the backend directory and run nodemon server to test run
your app and it should print out the message:
server is running on port:5000

If you didn ’ t get any errors, it means you have successfully connected to the
database (a common error is putting in a wrong password in the connection
string). We are not accessing anything in the database yet, but we are at least
connected to the database.

Note: You may see a deprecation warning something like:
“Warning: Current Server Discovery and Monitoring engine is deprecated, and will be removed in a
future version. To use the new Server Discover and Monitoring engine, pass option {
useUnifiedTopology: true } to the MongoClient constructor.”

It is fine to leave them there, but you can remove them by passing options to
the MongoClient.
For example, you could instantiate MongoClient by adding:
new mongodb.MongoClient(

process.env.MOVIEREVIEWS_DB_URI,
{ useNewUrlParser: true, useUnifiedTopology: true }

)

See the Node.js MongoDB Driver API documentation for more information
on these options.

Now, go to the browser and type in the URL localhost:5000/api/v1/movies
and it should print out the following:

Figure 1

This shows that our route is working. And if you enter any other URL, like
http://localhost:5000/123, you will get the error:
{"error":"not found"}

Which is returned by the wild card route:
app.use('*', (req,res)=>{

res.status(404).json({error: "not found"})
})

http://localhost:5000/123

CHAPTER 7: CREATING THE MOVIES DATA

ACCESS OBJECT
Next, we will implement the movies data access object to allow our code to
access movie(s) in our database. So in backend directory, create a directory
called dao (data access object).

In dao, create the file moviesDAO.js with the following code:
let movies

export default class MoviesDAO{
static async injectDB(conn){

if(movies){
return

}
try{

movies = await conn.db(process.env.MOVIEREVIEWS_NS)
.collection('movies')

}
catch(e){

console.error(`unable to connect in MoviesDAO: ${e}`)
}

}
}

Code Explanation
let movies

movies stores the reference to the database.

We then export the class MoviesDAO which contains an async method
injectDB. injectDB is called as soon as the server starts and provides the
database reference to movies.

if(movies){
return

}

If the reference already exists, we return.
try{

movies = await conn.db(process.env.MOVIEREVIEWS_NS)
.collection('movies')

}

Else, we go ahead to connect to the database name
(process.env.MOVIEREVIEWS_NS) and movies collection.
Lastly, if we fail to get the reference, we send an error message to the
console.

catch(e){
console.error(`unable to connect in MoviesDAO: ${e}`)

}

Retrieving Movies
We next define the method to get all movies from the database. Add to
moviesDAO.js the below method:

static async getMovies({// default filter
filters = null,
page = 0,
moviesPerPage = 20, // will only get 20 movies at once

} = {}){
let query
if(filters){

if("title" in filters){
query = { $text: { $search: filters['title']}}

}else if("rated" in filters){
query = { "rated": { $eq: filters['rated']}}

}
}

let cursor
try{

cursor = await movies
.find(query)
.limit(moviesPerPage)
.skip(moviesPerPage * page)

const moviesList = await cursor.toArray()
const totalNumMovies = await movies.countDocuments(query)
return {moviesList, totalNumMovies}

}
catch(e){

console.error(`Unable to issue find command, ${e}`)
return { moviesList: [], totalNumMovies: 0}

}
}

Code Explanation

static async getMovies({// default filter
filters = null,
page = 0,
moviesPerPage = 20, // will only get 20 movies at once

} = {}){

The getMovies method accepts a filter object as its first argument. The default
filter has no filters, retrieves results at page 0 and retrieves 20 movies per
page. In our app, we provide filtering results by movie title “ title ” and
movie rating “ rated ” (e.g. ‘ G ’ , ‘ PG, ’ ‘ R ’). So a filters object might
look something like:
{

title: “dragon”, // search titles with ‘dragon’ in it
 rated: “G” // search ratings with ‘G’
}

With the filters object, we then construct our query:
if(filters){

if(filters.hasOwnProperty('title')){
query = { $text: { $search: filters['title']}}

}else if(filters.hasOwnProperty('rated')){ /
query = { "rated": filters['rated']}

}
}

We have a query variable which will be empty unless a user specifies filters
in his retrieval, in which case we will put together a query. We first check if
the filters object contains the property title with filters.hasOwnProperty('title') . If
so, we use the $text query operator together with $search to search for movie
titles containing the user specified search terms. $text also allows us to query
using multiple words by separating your words with spaces to query for
documents that match any of the search terms (logical OR). E.g. “ kill
dragon ” . You can find out more about $text at:
https://docs.mongodb.com/drivers/node/fundamentals/crud/read-
operations/text/
Importantly, we also have to later specify in MongoDB Atlas that we want to
enable text searches on the title field. We will get to that later.

Queries are very powerful in MongoDB. We have showed the $text operator.
In the next filter where we check if user has specified the rated filter, we
check if the user specified value is equal to the value in the database field

query = { "rated": filters['rated']}.

let cursor
try{

cursor = await movies
.find(query)
.limit(moviesPerPage)
.skip(moviesPerPage * page)

const moviesList = await cursor.toArray()
const totalNumMovies = await movies.countDocuments(query)
return {moviesList, totalNumMovies}

}
catch(e){

console.error(`Unable to issue find command, ${e}`)
return { moviesList: [], totalNumMovies: 0}

}

We then find all movies that fit our query and assign it to a cursor. If there is
any error, we just return an empty moviesList and totalNumMovies to be 0.

Now, why do we need a cursor? Because our query can potentially match
very large sets of documents, a cursor fetches these documents in batches to
reduce both memory consumption and network bandwidth usage. Cursors are
highly configurable and offer multiple interaction paradigms for different use
cases. For example, we used the cursor ’ s limit method to cap the number of
documents returned as specified in moviesPerPage.

Additionally, we use the skip method together with limit. When skip and limit
is used together, the skip applies first and the limit only applies to the
documents left over after the skip.

This allows us to implement pagination later on in the frontend because we
can retrieve a specific page ’ s result. For e.g. if the specific page is 1, we
skip 20 results first (moviesPerPage * 1) and then retrieve the next 20 results. If
the specified page is 2, we skip 40 results (moviesPerPage * 2) and then retrieve
the next 20 results.

const totalNumMovies = await movies.countDocuments(query)

We then get the total number of movies by counting the number of
documents in the query and return moviesList and totalNumMovies in an
object.

Initialising MoviesDAO

In index.js, add the below to import and get the reference to the moviesDAO
file.
import app from './server.js'
import mongodb from "mongodb"
import dotenv from "dotenv"
import MoviesDAO from './dao/moviesDAO.js'

Next, add the line below:
async function main(){

…
try {

await client.connect()
await MoviesDAO.injectDB(client)

app.listen(port, () =>{
console.log('server is running on port:'+port);

})
}

…

What this does is right after connecting to the database and just before we
start the server, we call injectDB to get our initial reference to the movies
collection in the database. In the next chapter, we will create
MoviesController to access MoviesDAO.

CHAPTER 8: CREATING THE MOVIES

CONTROLLER
Next, we will create the movies controller that the route file will use to access
the dao file. In the api folder, create a new file movies.controller.js with the
following code:
import MoviesDAO from '../dao/moviesDAO.js'

export default class MoviesController{

static async apiGetMovies(req,res,next){
const moviesPerPage = req.query.moviesPerPage ? parseInt(req.query.moviesPerPage) : 20
const page = req.query.page ? parseInt(req.query.page) : 0

let filters = {}
if(req.query.rated){

filters.rated = req.query.rated
}
else if(req.query.title){

filters.title = req.query.title
}

const { moviesList, totalNumMovies } = await MoviesDAO.getMovies({filters, page,
moviesPerPage})

let response ={
movies: moviesList,
page: page,
filters: filters,
entries_per_page: moviesPerPage,
total_results: totalNumMovies,

}
res.json(response)

}
}

Code Explanation
import MoviesDAO from '../dao/moviesDAO.js'

We first import the DAO.
static async apiGetMovies(req,res,next){

const moviesPerPage = req.query.moviesPerPage ? parseInt(req.query.moviesPerPage) : 20
const page = req.query.page ? parseInt(req.query.page) : 0

When apiGetMovies is called via a URL, there will be a query string in the
response object (req.query) where certain filter parameters might be specified
and passed in through key-value pairs. For e.g. we have a URL:

http://localhost:5000/api/v1/movies?
title=dragon&moviesPerPage=15&page=0

req.query would return the following JavaScript object after the query string
is parsed:
{

title: “dragon”,
moviesPerPage:"15",
page: "0"

}

This is an example of what a query string look like. Later on when we can get
our app running, you will get a more complete picture.

http://localhost:5000/api/v1/movies?title=dragon&moviesPerPage=15&page=0

One of the query strings is moviesPerPage.

const moviesPerPage = req.query.moviesPerPage ? parseInt(req.query.moviesPerPage) : 20

We check if moviesPerPage exists, parse it into an integer. We do the same
for the page query string.

let filters = {}

We then start with an empty filters object, i.e. no filters are applied at first.
if(req.query.rated){

filters.rated = req.query.rated
}
else if(req.query.title){

filters.title = req.query.title
}

We then check if the rated query string exists, then add to the filters object.
We do the same for title.

const { moviesList, totalNumMovies } = await MoviesDAO.getMovies({
filters,
page,
moviesPerPage

})

We next call getMovies in MoviesDAO that we have just implemented.
Remember that getMovies will return moviesList and totalNumMovies.

let response ={
movies: moviesList,
page: page,
filters: filters,
entries_per_page: moviesPerPage,
total_results: totalNumMovies,

}
res.json(response)

We then send a JSON response with the above response object to whoever
calls this URL.

Applying the Controller to our Route

Having completed the controller, let ’ s now apply it to our route. Go to
movies.route.js and add:
import express from 'express'

import MoviesController from './movies.controller.js'

const router = express.Router()

router.route('/').get(MoviesController.apiGetMovies)

export default router

So each time there is a request for URL ‘ / ’ , i.e.
localhost:5000/api/v1/movies/, we call MoviesController.apiGetMovies.

Let ’ s test our backend API in the next chapter.

CHAPTER 9: TESTING OUR BACKEND API
Now, let ’ s test if our Node backend server can access the database. Go to
the browser and type in the URL http://localhost:5000/api/v1/movies and it
should send back movie results (fig. 1).

Figure 1

That means our app has successfully queried the database!

Now, we can test the API in our browser, but it is better to test our API with a
tool called Insomnia. Go to https://insomnia.rest/ and download the free
Insomnia app (fig. 2).

http://localhost:5000/api/v1/movies
https://insomnia.rest/

Figure 2

Insomnia helps us test APIs where we can send REST requests to our APIs
directly.

Open Insomnia and make a GET request to
http://localhost:5000/api/v1/movies (fig. 3).

Figure 3

You should be able to see the retrieved movies on the side (fig. 4).

http://localhost:5000/api/v1/movies

Figure 4

You can see the movie ’ s properties like title, plot etc.

Figure 5

If you collapse the movies array, you can see the page, filters object,
entries_per_page and total_results property in the response as well (fig. 5).
This is because back in movies.controller.js, we have defined the response in
getMovies as:

…
let response ={

movies: moviesList,
page: page,
filters: filters,

entries_per_page: moviesPerPage,
total_results: totalNumMovies,

}
res.json(response)

The page, entries_per_page and total_results properties will come in useful
later when we implement pagination.

Testing the Filters

Next, let ’ s test the URL with some filters. To apply filters, we add them to
the URL query string. For e.g. to filter for movies with rating ‘ G ’ , we send
the following URL in a GET request:
http://localhost:5000/api/v1/movies?rated=G and make the request.

You will retrieve movies rated ‘ G ’ . And at the bottom, we also have the
filters object, entries_per_page: 20, and total_results: 407 (fig. 6).

Figure 6

To filter for page 2, send a GET request to:

http://localhost:5000/api/v1/movies?rated=G&page=2

Search by title won ’ t yet work as we have not yet set up the title index in
MongoDB Atlas. To do so, go to MongoDB Atlas, and in the sample_mflix
database, movies collection, go to ‘ Indexes ’ (fig. 7):

http://localhost:5000/api/v1/movies?rated=
http://localhost:5000/api/v1/movies?rated=

Figure 7

Select ‘ Create Index ’ and under ‘ Fields ’ , enter:
{

“title”: “text”,
}

Figure 8

Select ‘ Confirm ’ and it will create our index to support text search queries
on string content. So if you send a request:

http://localhost:5000/api/v1/movies?title=Seven

It will return movie results with Seven in its title.

CHAPTER 10: LEAVING MOVIE REVIEWS
Besides searching movies, users can leave reviews for them. So let ’ s create
the routes to post, put and delete reviews. post is for creating a review, put is
for editing a review, and delete for deleting reviews. In the route file
movies.route.js, add the routes as shown in bold:
import express from 'express'
import MoviesController from './movies.controller.js'
import ReviewsController from './reviews.controller.js'

const router = express.Router()

router.route('/').get(MoviesController.apiGetMovies)

router
.route("/review")
.post(ReviewsController.apiPostReview)
.put(ReviewsController.apiUpdateReview)
.delete(ReviewsController.apiDeleteReview)

export default router

Code Explanation

We import the ReviewsController which we will create later.

We then add a route ‘ /review ’ which handles post, put and delete http
requests all within this one route call. That is to say, if the ‘ /review ’ route
receives a post http request to add a review, we call apiPostReview. If
‘ /review ’ receives a put http request to edit a review, call apiUpdateReview.
And finally, if ‘ /review ’ receives a delete http request to delete a review,
call apiDeleteReview.

ReviewsController
Next, let ’ s create reviews.controller.js with the following code:
import ReviewsDAO from '../dao/reviewsDAO.js'

export default class ReviewsController{
static async apiPostReview(req,res,next){

try{
const movieId = req.body.movie_id
const review = req.body.review
const userInfo = {

name: req.body.name,
_id: req.body.user_id

}

const date = new Date()

const ReviewResponse = await ReviewsDAO.addReview(
movieId,
userInfo,
review,
date

)
res.json({ status: "success "})

}catch(e){
res.status(500).json({ error: e.message})

}
}

}

Code Explanation
import ReviewsDAO from '../dao/reviewsDAO.js'

We first import ReviewsDAO which we will create later. We then have the
apiPostReview method:

const movieId = req.body.movie_id
const review = req.body.review
const userInfo = {

name: req.body.name,
_id: req.body.user_id

}

We get information from the request ’ s body parameter. Previously in
MoviesController, we got information from the request ’ s query parameter as
we extracted data from the URL e.g. req.query.title. This time, we retrieve
the data from the body of the request. In the React frontend of the app (which
we will implement later), we call this endpoint with something like:
axios.post("https://localhost:5000/api/v1/movies/review", data)

The data object generated in the frontend will look something like:

{
review: “great movie”,
name: “john”,
user_id: “123”,

movie_id: “573a1390f29313caabcd6223”
}

data will be passed in as the request ’ s body. Thus, to retrieve each of the
field values, we use req.body.movie_id, req.body.review etc.

const ReviewResponse = await ReviewsDAO.addReview(
movieId,
userInfo,
review,
date

)

We send the information to ReviewsDAO.addReview which we will create
later.

…
res.json({ status: "success "})

}catch(e){
res.status(500).json({ error: e.message})

}

Finally, we return ‘ success ’ if the post works and an error if it didn ’ t.

ReviewsController apiUpdateView
We next create the apiUpdateReview method which is quite similar to the
apiPostReview method.

static async apiUpdateReview(req,res,next){
try{

const reviewId = req.body.review_id
const review = req.body.review

const date = new Date()

const ReviewResponse = await ReviewsDAO.updateReview(
reviewId,
req.body.user_id,
review,
date

)

var { error } = ReviewResponse
if(error){

res.status.json({error})
}

if(ReviewResponse.modifiedCount === 0){

throw new Error ("unable to update review. User may not be original poster")
}
res.json({ status: "success "})

}catch(e){
res.status(500).json({ error: e.message})

}
}

Code Explanation

Like apiPostReview, apiUpdateReview will be called by the frontend with a
request like the below:
axios.put("https://localhost:5000/api/v1/movies/review", data)

We extract the movieId and review text similar to what we have done in
posting a review.

const ReviewResponse = await ReviewsDAO.updateReview(
reviewId,
req.body.user_id,
review,
date

)

We then call ReviewsDAO.updateReview and pass in user_id to ensure that
the user who is updating the view is the one who has created it.

if(ReviewResponse.modifiedCount === 0){
throw new Error ("unable to update review. user may not be original poster")

}

updateReview returns a document ReviewResponse which contains the
property modifiedCount. modifiedCount contains the number of modified
documents. We check modifiedCount to ensure that it is not zero. If it is, it
means the review has not been updated and we throw an error.

ReviewsController apiDeleteView
We lastly have apiDeleteReview:

static async apiDeleteReview(req,res,next){
try{

const reviewId = req.body.review_id
const userId = req.body.user_id
const ReviewResponse = await ReviewsDAO.deleteReview(

reviewId,
userId,

)

res.json({ status: "success "})
}catch(e){

res.status(500).json({ error: e.message})
}

}

Like apiPostReview and apiUpdateReview, we extract reviewId and userId.
With userId, we ensure that the user deleting the view is the one who has
created the view. Now, let ’ s create ReviewsDAO.

ReviewsDAO
In dao folder, create the file reviewsDAO.js with the following code:
import mongodb from "mongodb"
const ObjectId = mongodb.ObjectId

let reviews

export default class ReviewsDAO{
static async injectDB(conn){

if(reviews){
return

}
try{

reviews = await conn.db(process.env.MOVIEREVIEWS_NS).collection('reviews')
}
catch(e){

console.error(`unable to establish connection handle in reviewDAO: ${e}`)
}

}
}

Code Explanation
import mongodb from "mongodb"
const ObjectId = mongodb.ObjectId

We import mongodb to get access to ObjectId. We need ObjectId to convert
an id string to a MongoDB Object id later on.

if(reviews){
return

}

try{
reviews = await conn.db(process.env.MOVIEREVIEWS_NS).collection('reviews')

}

For the rest of the code, notice that it is similar to MoviesDAO. If reviews is
not filled, we then access the database reviews collection. Note that if the
reviews collection doesn ’ t yet exist in the database, MongoDB
automatically creates it for us.

Initiating ReviewsDAO in index.js

We will also need to initiate ReviewsDAO as we did for MoviesDAO in
index.js. In index.js, add in the below two lines:
import app from './server.js'
import mongodb from "mongodb"
import dotenv from "dotenv"
import MoviesDAO from './dao/moviesDAO.js'
import ReviewsDAO from './dao/reviewsDAO.js'

async function main(){
…
try {

await client.connect()
await MoviesDAO.injectDB(client)
await ReviewsDAO.injectDB(client)

app.listen(port, () =>{
console.log('server is running on port:'+port);

})
}
…

}
main().catch(console.error);

ReviewsDAO addReview

In reviewsDAO.js, add in the addReview method for creating a review:
static async addReview(movieId, user, review, date){

try{
const reviewDoc = {

name: user.name,
user_id: user._id,
date: date,
review: review,
movie_id: ObjectId(movieId)

}

return await reviews.insertOne(reviewDoc)
}
catch(e){

console.error(`unable to post review: ${e}`)
return { error: e}

}
}

We first create a reviewDoc document object. Note that for the movie_id, we
have to first convert the movieId string to a MongoDB object id. We then
insert it into the reviews collection with insertOne.

ReviewsDAO updateReview

In reviewsDAO.js, add in the below updateReview method for editing a
review:

static async updateReview(reviewId, userId, review, date){
try{

const updateResponse = await reviews.updateOne(
{user_id: userId,_id: ObjectId(reviewId)},
{$set:{review:review, date: date}}

)
return updateResponse

}
catch(e){

console.error(`unable to update review: ${e}`)
return { error: e}

}
}

When calling reviews.updateOne, we specify the first argument { user_id:
userId,_id: ObjectId(reviewId)} to filter for an existing review created by userId and
with reviewId. If the review exists, we then update it with the second
argument which contains the new review text and date.

ReviewsDAO deleteReview

In reviewsDAO.js, add in the below deleteReview method for deleting a
review:

static async deleteReview(reviewId, userId){
try{

const deleteResponse = await reviews.deleteOne({
_id: ObjectId(reviewId),
user_id: userId,

})
return deleteResponse

}
catch(e){

console.error(`unable to delete review: ${e}`)
return { error: e}

}
}

When calling reviews.deleteOne, similar to updateOne, we specify
ObjectId(reviewId) to look for an existing review with reviewId and created by
userId. If the review exists, we then delete it.

CHAPTER 11: TESTING THE REVIEWS API
To test the reviews API, first get an existing movie id. You can just send a
get request to http://localhost:5000/api/v1/movies to retrieve all movies and
then pick any movie id.

Next, make a post request to: localhost:5000/api/v1/movies/review and
provide a review body something like:
{

"movie_id": "573a1390f29313caabcd4135",
"review": "great movie",
"user_id": "1234",
"name": "john"

}

Figure 1

*Note: Make sure that movie_id is in a valid ObjectID format. Else,
MongoDB will not accept it and will throw an error something like:
“Error: Argument passed in must be a single String of 12 bytes or a string of 24 hex characters”

Click ‘ Send ’ and you should get a status: success response. And if you go to
MongoDB Atlas, your newly posted review should be in the reviews
collection.

Testing Edit

Now let ’ s see if we can edit a review. We will need the review_id of an
existing review. With the review_id, send a put request in Insomnia to
localhost:5000/api/v1/movies/review
with a JSON object like:
{

http://localhost:5000/api/v1/movies

"review_id": "60987656387806c22051bb67",
"review": "bad movie",
"user_id": "1234",
"name": "john"

}

And if you go to MongoDB Atlas (you might need to refresh it), the review
should be edited.

Testing Delete

Now, let ’ s test the delete review endpoint. Send a delete request to
localhost:5000/api/v1/movies/review with a JSON object like:
{

"review_id": "609879ea2c7565c289746500",
"user_id": "1234"

}

And if you go to MongoDB Atlas and select refresh, the review will no
longer exist.

So, we have tested our add, edit and delete review API endpoints!

CHAPTER 12: ROUTE TO GET A SINGLE

MOVIE AND ITS RATINGS
We are getting close to completing the back end. We just need to add two
more routes, a route to get a specific movie (with its reviews) and a route to
get all ratings. In the movies.route.js route file, add the two routes as shown:
…
router.route('/').get(MoviesController.apiGetMovies)
router.route("/id/:id").get(MoviesController.apiGetMovieById)
router.route("/ratings").get(MoviesController.apiGetRatings)
…

Code Explanation
router.route("/id/:id").get(MoviesController.apiGetMovieById)

This route retrieves a specific movie and all reviews associated for that
movie.
router.route("/ratings").get(MoviesController.apiGetRating)

This route returns us a list of movie ratings (e.g. ‘ G ’ , ‘ PG ’ , ‘ R ’) so
that a user can select the ratings from a dropdown menu in the front end.

movies.controller.js

Next, let’s implement the apiGetMovieById and apiGetRatings methods in
MoviesController. Add in the following two methods into
movies.controller.js:
import MoviesDAO from '../dao/moviesDAO.js'

export default class MoviesController{
…

static async apiGetMovieById(req,res, next){
try{

let id = req.params.id || {}
let movie = await MoviesDAO.getMovieById(id)
if(!movie){

res.status(404).json({ error: "not found"})
return

}
res.json(movie)

}
catch(e){

console.log(`api, ${e}`)
res.status(500).json({error: e})

}
}

static async apiGetRatings(req,res,next){
try{

let propertyTypes = await MoviesDAO.getRatings()
res.json(propertyTypes)

}
catch(e){

console.log(`api,${e}`)
res.status(500).json({error: e})

}
}

}

Code Explanation

let id = req.params.id || {}

We first look for an id parameter which is the value after the ‘/’ in a URL.
E.g. locahost:5000/api/v1/movies/id/12345

Note the difference between a request query and parameter. In a query, there
is a ‘?’ after the URL followed by a key-value e.g. /api/v1/movies?
title=dragon
In a parameter, it’s the value after ‘/’.

let movie = await MoviesDAO.getMovieById(id)
if(!movie){

res.status(404).json({ error: "not found"})
return

}
res.json(movie)

We then call MoviesDAO.getMovieById which we will create later. The
method returns us the specific movie in a JSON response. If there is no
movie, we return an error.

The apiGetRatings is more straightforward. We do not have to feed in any
parameters, but simply call MoviesDAO.apiGetRatings.

Implementing getMovieById and getRatings in

http://localhost:5000/api/v1/movies?title=dragon&moviesPerPage=15&page=0

MoviesDAO
We will first implement getRatings in moviesDAO.js as it is more
straightforward. Add the below method into moviesDAO:

static async getRatings(){
let ratings = []
try{

ratings = await movies.distinct("rated")
return ratings

}
catch(e){

console.error(`unable to get ratings, $(e)`)
return ratings

}
}

We use movies.distinct to get all the distinct rated values from the movies
collection. We then assign the results to the ratings array.

getMovieById

Next, let’s implement getMovieById which can be a little complicated
because other than getting the specific movie from the movies collection, we
will also be getting its related reviews from the reviews collection.

Add the below method and the import statement in bold into moviesDAO:
import mongodb from "mongodb"
const ObjectId = mongodb.ObjectID

let movies

export default class MoviesDAO{
…

static async getMovieById(id){
try{

return await movies.aggregate([
{

$match: {
_id: new ObjectId(id),

}
} ,
{ $lookup:

{
from: 'reviews',
localField: '_id',
foreignField: 'movie_id',

as: 'reviews',
}

}
]).next()

}
catch(e){

console.error(`something went wrong in getMovieById: ${e}`)
throw e

}
}

…

Code Explanation

We use aggregate to provide a sequence of data aggregation operations. In
our case, the first operation is $match, where we look for the movie
document that matches the specified id.

Next, we use the $lookup operator to perform an equality join using the _id
field from the movie document with the movie_id field from reviews
collection.

The $lookup stage has the following syntax:
{

$lookup:
{

from: <collection to join>,
localField: <field from the input document>,
foreignField: <field from the documents of the "from" collection>,
as: <output array field>

}
}

This finds all the reviews with the specific movie id and returns the specific
movie together with the reviews in an array.
$lookup is just one component of the MongoDB aggregation framework.
MongoDB aggregations are very powerful but we will just touch a small part
of this now.

Testing our App

Now, let’s test the two routes we have added into movies.route.js:
router.route("/id/:id").get(MoviesController.apiGetMovieById)

router.route("/ratings").get(MoviesController.apiGetRatings)

Let’s first test the /ratings route. Send a GET request to:
localhost:5000/api/v1/movies/ratings/.
You should get all the ratings returned:
[

"AO",
"APPROVED",
"Approved",
"G",
"GP",
"M",
"NC-17",
"NOT RATED",
"Not Rated",
"OPEN",
"PASSED",
"PG",
"PG-13",
"R",
"TV-14",
"TV-G",
"TV-MA",
"TV-PG",
"TV-Y7",
"UNRATED",
"X"

]

We will later use this to populate the dropdown menu.

Testing our app – Get Specific Movie

Next, let’s test the /id/:id route. Send a GET request to:

localhost:5000/api/v1/movies/id/573a1390f29313caabcd6223
(fill in your own movie id)

and you should get the specific movie data and the reviews array in the
response too.
{

"_id": "573a1390f29313caabcd6223",
"plot": "..",
"genres": [

"Comedy",
"Drama",
"Family"

],
"runtime": 65,
"cast": [

"Mary Pickford",
"Madlaine Traverse",
"Charles Wellesley",
"Gladys Fairbanks"

],
"title": "The Poor Little Rich Girl",

…
"reviews": [

{
"_id": "6098bdd132398dc6576a89a8",
"name": "jason",
"user_id": "1234",
"date": "2021-05-10T05:00:01.675Z",
"review": "nice!",
"movie_id": "573a1390f29313caabcd6223"

},
{

"_id": "6098bddf32398dc6576a89a9",
"name": "john",
"user_id": "1236",
"date": "2021-05-10T05:00:15.380Z",
"review": "bad!",
"movie_id": "573a1390f29313caabcd6223"

}
]

}

If the reviews array is empty, create some reviews for the movie first by
sending POST requests to localhost:5000/api/v1/movies/review/ and JSON
objects to add the reviews e.g.
{

"movie_id":"573a1390f29313caabcd6223",
"review":"nice!",
"user_id":"1234",
"name":"jason",

}

{
"movie_id":"573a1390f29313caabcd6223",
"review":"bad!",
"user_id":"1236",
"name":"john"

}

Send the GET request to get the specific movie again and you should get
reviews populated in the response.

And that completes our backend implemented with Node and Express. All
our routes work. So let’s create our frontend and then connect it to our
backend.

REACT FRONTEND

CHAPTER 13: INTRODUCTION TO REACT
For those who have some experience with React, this section will be familiar
to you. But even if you are new to React, you should still be able to follow
along. If you are interested in digging into React details, you can check out
my React book.

Before we go on further, let ’ s explain briefly what is React. React is a
framework released by Facebook for creating user interfaces with
components. For example, if we want to build a storefront module like what
we see on Amazon, we can divide it into three components. The search bar
component, sidebar component and products component (fig. 1).

Figure 1

Components can also contain other components. For example, in products
component where we display a list of products, we do so using multiple
product components. Also, in each product component, we can have a rating
component.

The benefit of such an architecture helps us to break up a large application
into smaller manageable components. Plus, we can reuse components within
the application or even in a different application. For example, we can re-use
the rating component in a different application.

https://www.amazon.com/dp/B088ZT9P36

A React component contains a JSX template that ultimately outputs HTML
elements. It has its own data and logic to control the JSX template. When the
values of its data changes, React will update the concerned UI component.

Below is an example of a component that displays a simple string
‘ Products ’ .
import React from 'react';

function Products() {
return (

<div>
<h2>

Products
</h2>

</div>
);

}

export default Products;

The function returns a React element in JSX syntax which determines what is
displayed in the UI.
JSX is a syntax extension to Javascript. JSX converts to HTML when
processed.

Creating the React Project folder
We will create our initial React project by using ‘ create-react-app ’ .
‘ create-react-app ’ (CRA) is the best way to start building a new React
single page application. It sets up our development environment so that we
can use the latest Javascript features and optimization for our app. It is a
Command Line Interface tool that makes creating a new React project,
adding files and other on-going development tasks like testing, bundling and
deployment easier. It uses build tools like Babel and Webpack under the hood
and provides a pleasant developer experience for us that we don ’ t have to do
any manual configurations for it.

First, let ’ s go to our movie-reviews directory and in it, we will use create-
react-app to create our React app. We can actually create a React app without
installing CRA by running:
npx create-react-app <project name>

In our case, our project will be called frontend. So run:
npx create-react-app frontend

Note: The reason we are using npx is because create-react-app is a package
expected to be run only once in our project. So it is more convenient to run it
only once rather than downloading it on to our machine and then use it.

create-react-app will create a directory ‘ frontend ’ containing the default
React project template with all the dependencies installed. When the folder is
created, navigate to it by typing in the Terminal:
cd frontend

and then run:
npm start

Your browser will then show a moving React icon (fig. 1) which shows that
React is loaded successfully.

Figure 1

Project File Review
Now let’s look at the project files that have been created for us. When you
open the movie-reviews/frontend project folder in VScode editor, you will
find a couple of files (fig. 2).

fig. 2

We will not go through all the files as our focus is to get started with our
React app quickly, but we will briefly go through some of the more important
files and folders.

Our app lives in the src folder. All React components, CSS styles, images
(e.g. logo.svg) and anything else our app needs go here. Any other files
outside of this folder are meant to support building your app (the app folder is
where we will work 99% of the time!). In the course of this book, you will
come to appreciate the uses for the rest of the library files and folders.

In the src folder, we have index.js which is the main entry point for our app.

In index.js, we render the App React element into the root DOM node.
Applications built with just React usually have a single root DOM node.

index.js
import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';

ReactDOM.render(
<React.StrictMode>

<App />
</React.StrictMode>,
document.getElementById('root')

);

serviceWorker.unregister();

In index.js, we import both React and ReactDOM which we need to work
with React in the browser. React is the library for creating views. ReactDOM
is the library used to render the UI in the browser. The two libraries were split
into two packages for version 0.14 and the purpose for splitting is to allow for
components to be shared between the web version of React and React Native,
thus supporting rendering for a variety of platforms.

index.js imports index.css, App component and serviceWorker with the
following lines.
import './index.css';
import App from './App';
import * as serviceWorker from './serviceWorker';

It then renders App with:
ReactDOM.render(

<React.StrictMode>
<App />

</React.StrictMode>,
document.getElementById('root')

);

The last line serviceWorker.unregister() has comments:
// If you want your app to work offline and load faster, you can change
// unregister() to register() below. Note this comes with some pitfalls.

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.register() is meant to create progressive web apps (PWA)
catered more for mobile React Native apps to work offline. This however is
out of the scope of this book and we can safely leave the code as
serviceWorker.unregister() for now.

App.js is the main React code that we display on the page.

App.js
import logo from './logo.svg';
import './App.css';

function App() {
return (

<div className="App">
<header className="App-header">

<p>

Edit <code>src/App.js</code> and save to reload.
</p>
<a

className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"

>
Learn React

</header>

</div>
);

}

export default App;

Note: any element that has an HTML class attribute is using className for
that property instead of class. Since class is a reserved word in Javascript, we
have to use className to define the class attribute of an HTML element.

In the above, we have a functional-based component called App. Every React
application has at least one component: the root component, named App in
App.js. The App component controls the view through the JSX template it
returns:

return (

<div className="App">
…

</div>
);

A component has to return a single React element. In our case, App returns a
single <div />. The element can be a representation of a native DOM
component, such as <div />, or another composite component that you've
defined yourself.

Components can either be functional based or class based. We will talk more
on this later, but as a starter, what we have in App is a functional-based
component as seen from its header function App().

Add React bootstrap framework:
We will use React bootstrap to make our UI look more professional. React
Bootstrap (https://react-bootstrap.github.io) is a library of reusable frontend
components that contain JSX based templates to help build user interface
components (like forms, buttons, icons) for web applications.

To install React bootstrap, in the Terminal, run:
npm install react-bootstrap bootstrap

React-Router-DOM
We will next install react-router-dom to route different URLs to different
pages in our React app. The React Router library interprets a browser URL as
an instruction to navigate to various components.

We can bind the router to links on a page and it will navigate to the
appropriate application view when the user clicks a link.

Install the react-router-dom library by executing the below in the Terminal:
npm install --save react-router-dom

Test our App

Now, let’s make sure that everything is working so far. Fill in App.js with the
below code.

import React from 'react'
import { Switch, Route, Link } from "react-router-dom"
import "bootstrap/dist/css/bootstrap.min.css"

function App() {
return (

<div className="App">
Hello World

</div>
);

}

export default App;

Code Explanation

Switch, Route and Link are imported from the ‘react-router-dom’ library
which help us create different URL routes to different components.
Bootstrap as mentioned earlier provides styling to our whole app.
And in the return method, we have a single and simple component with the
message ‘Hello World’.

Test Run

To test run our app, go to the frontend directory in the Terminal and run:
npm start

It will then open up localhost:3000 in your browser and print out the message
‘ Hello World ’ (fig. 3).

Figure 3

So our React app ’ s running well. In the next chapter, we will create a
navigation header bar in our app.

CHAPTER 14: CREATE NAVIGATION

HEADER BAR
Let ’ s add a navigation header bar which allows a user to select different
routes to access different components in the main part of the page. We will
start by creating some simple components and our router will load the
different components depending on the URL route a user selects.

Let ’ s first create a components folder in src (fig. 1).

Figure 1

In the components folder, we will create four new component files:

movies-list.js – a component to list movies
movie.js – a component to list a single movie
add-review.js – component to add a review
login.js – login component

Let ’ s first have a simple boilerplate code for each component:

movies-list.js
import React from 'react'

function MoviesList() {
return (

<div className="App">
Movies List

</div>
);

}

export default MoviesList;

movie.js
import React from 'react'

function Movie() {
return (

<div className="App">
Movie

</div>
);

}

export default Movie;

add-review.js
import React from 'react'

function AddReview() {
return (

<div className="App">
Add Review

</div>
);

}

export default AddReview;

login.js
import React from 'react'

function Login() {
return (

<div className="App">
Login

</div>
);

}

export default Login;

We will later revisit the above components and implement them in greater
detail.

Next in App.js, import the newly created components:
import React from 'react'
import { Switch, Route, Link } from "react-router-dom"
import "bootstrap/dist/css/bootstrap.min.css"

import AddReview from "./components/add-review"
import MoviesList from "./components/movies-list"
import Movie from "./components/movie"
import Login from "./components/login"

function App() {
return (

<div className="App">
Hello World

</div>
);

}
export default App;

React-Bootstrap Navbar Component

Next, we will grab a navbar component from React-Bootstrap (https://react-
bootstrap.github.io/components/navbar/ fig. 2)

Figure 2

Paste the markup into App.js by adding the following codes:
…
import Nav from 'react-bootstrap/Nav'
import Navbar from 'react-bootstrap/Navbar’
…
function App() {

return (
<div className="App">

<Navbar bg="light" expand="lg">
<Navbar.Brand href="#home">React-Bootstrap</Navbar.Brand>
<Navbar.Toggle aria-controls="basic-navbar-nav" />
<Navbar.Collapse id="basic-navbar-nav">

<Nav className="mr-auto">
<Nav.Link href="#home">Home</Nav.Link>
<Nav.Link href="#link">Link</Nav.Link>

</Nav>
</Navbar.Collapse>

</Navbar>

https://react-bootstrap.github.io/components/navbar/

</div>
);

}

export default App;

Bootstrap has different components that you can use. To use a component, go
to the Bootstrap documentation (https://react-bootstrap.github.io/), copy the
component ’ s markup and update it for your own purposes.

Note that I have dropped the NavDropdown and Search form elements from
the Navbar for simplicity. So we just have a basic bootstrap navbar. If you
run the app now, it should give you something like in figure 3:

Figure 3

In the current navbar, we have three links. The first is ‘ React-bootstrap ’
which is like the brand of the website. Sometimes, this would be a logo,
image, or just some text. We will leave it as a text.

The other two are links to ‘ Home ’ and ‘ Link ’ . We will change ‘ Home ’
to ‘ Movies ’ and link it to ‘ /movies ’ . We will remove ‘ Link ’ and replace
it with ‘ Login ’ or ‘ Logout ’ depending on the user ’ s login state.

So make the following changes in bold:
<Navbar bg="light" expand="lg">

<Navbar.Brand>Movie Reviews</Navbar.Brand>
<Navbar.Toggle aria-controls="basic-navbar-nav" />
<Navbar.Collapse id="basic-navbar-nav">

<Nav className="mr-auto">
<Nav.Link>

<Link to={"/movies"}>Movies</Link>
</Nav.Link>
<Nav.Link>

{ user ? (
<a>Logout User

) : (
<Link to={"/login"}>Login</Link>

)}
</Nav.Link>

</Nav>

</Navbar.Collapse>
</Navbar>

Code Explanation
<Link to={"/movies"}>Movies</Link>

We use the Link component imported from react-router-dom. Link allows us
to route to a different component. So when a user clicks on ‘ Movies ’ , it
will route to the movies component. The actual route definition will be
implemented and explained in the next chapter.

{ user ? (
<a>Logout User

) : (
<Link to={"/login"}>Login</Link>

)}

For the second link, if the user is not logged in, we will show ‘ Login ’
which links to the login component.
If the user is logged in, it will show ‘ Logout User ’ which will link to the
logout component.

How do we achieve this conditional rendering? In React, we can use curly
braces ‘ {} ’ to put in code. The code is a ternary statement where if its true,
execute the section after the '?'. If false, execute the section after the colon ':'.
For e.g. if you hardcode user to true, it will always show ‘ Logout User ’ :
e.g.

{ user true ? (
<a>Logout User

) : (
<Link to={"/login"}>Login</Link>

)}

Let ’ s test our app now to see how it looks like. But before that, we need to
enclose our Links in a BrowserRouter. To do so, in index.js, add:
import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';
import {BrowserRouter} from 'react-router-dom';

ReactDOM.render(
<BrowserRouter>

<App />

</BrowserRouter>,
document.getElementById('root')

);

And if you run your app, it should look like figure 4:

Figure 4

If you change user to false:
{ user false ? (

<a>Logout User
) : (

<Link to={"/login"}>Login</Link>
)}

it will show the Login link (fig. 5).

Figure 5

We should of course not leave it hard-coded as true or false. Make sure you
change it back to user:

{ user ? (
<a>Logout User

) : (
<Link to={"/login"}>Login</Link>

)}

Login Logout

In this section, we will replace the hardcoding to reflect the actual login state
of a user and also implement a preliminary login-logout function. Let ’ s first
declare a user state variable using React hooks by adding the below in App.js:
…
function App() {

const [user, setUser] = React.useState(null)

async function login(user = null){// default user to null
setUser(user)

}

async function logout(){
setUser(null)

}

return (
<div className="App">

…
<Nav.Link>

{ user ? (
Logout User

) : (
<Link to={"/login"}>Login</Link>

)}
</Nav.Link>

…
</div>

);
}

Code Explanation
const [user, setUser] = React.useState(null)

React.useState is a ‘ hook ’ that lets us add some local state to functional
components. useState declares a ‘ state variable ’ . React preserves this state
between re-renders of the component. In our case, our state consists of a user
variable to represent either a logged in or logged out state. When we pass null
to useState, i.e. useState(null), we specify null to be the initial value for user.

useState returns an array with two values: the current state value and a
function that lets you update it. In our case, we assign the current state user
value to user, and the function to update it to setUser.

async function login(user = null){// default user to null
setUser(user)

}

async function logout(){
setUser(null)

}

With login, we set the user state. The login function will be called from the
Login component which we will implement and re-visit later.

{ user ? (
Logout User

) : (
<Link to={"/login"}>Login</Link>

)}

logout() simply sets user to null.

For our app, we won't be implementing a full login system as it is outside the
scope of this book. But we have a preliminary login where you can update it
with a full-fledged login using Google sign-in, Firebase, OAuth or other
authentication providers.

CHAPTER 15: DEFINING OUR ROUTES
After the navbar section in App.js, add the route section by adding the below
codes in bold:

<div className="App">
<Navbar bg="light" expand="lg">

…
</Navbar>

<Switch>
<Route exact path={["/", "/movies"]} component={MoviesList}>
</Route>
<Route path="/movies/:id/review" render={(props)=>

<AddReview {...props} user={user} />
}>
</Route>
<Route path="/movies/:id/" render={(props)=>

<Movie {...props} user={user} />
}>
</Route>
<Route path="/login" render={(props)=>

<Login {...props} login={login} />
}>
</Route>

</Switch>
</div>

Code Explanation

We use a Switch component to switch between different routes. The Switch
component renders the first route that matches.

<Route exact path={["/", "/movies"]} component={MoviesList}>
</Route>

We first have the exact path route. If the path is “/” or “/movies”, show the
MoviesList component.

<Route path="/movies/:id/review" render={(props)=>
<AddReview {...props} user={user} />

}>

We then have the route for "/movies/:id/review" . Note that we use render instead
of component because render allows us to pass in props into a component
rendered by React Router. In this case, we are passing user (the logged-in

user information) as props to the AddReview component. We can pass data
into a component by passing in a object called props.

We will see later how props work when we implement the AddReview
component.

We then next have the routes for a specific movie "/movies/:id/" and "/login" to
render the Movie and Login component respectively.

<Route path="/login" render={(props)=>
<Login {...props} login={login} />

}>

Note that the login route passes in the login function as a prop:
async function login(user = null){// default user to null

setUser(user)
}

This allows the login function to be called from the Login component and
thus populate the user state variable as we will see later.

Testing our Routes

If you run your React frontend now and click on the different links in the
navbar, you will see the different components being rendered (fig. 1).

Figure 1

CHAPTER 16: MOVIEDATASERVICE:
CONNECTING TO THE BACKEND
To retrieve the list of movies from the database, we will need to connect to
our backend server. We will create a service class for that. A service is a class
with a well-defined specific function your app needs. In our case, our service
is responsible for talking to the backend to get and save data. Service classes
provide their functionality to be consumed by components. We will cover
components in the next chapter.

Under src, create a new folder called services. In services, create a new file
movies.js with the following code:
import axios from "axios";

class MovieDataService{

getAll(page = 0){
return axios.get(`http://localhost:5000/api/v1/movies?page=${page}`)

}

get(id){
return axios.get(`http://localhost:5000/api/v1/movies/id/${id}`)

}

find(query, by = "title", page = 0){
return axios.get(

`http://localhost:5000/api/v1/movies?${by}=${query}&page=${page}`
)

}

createReview(data){
return axios.post("http://localhost:5000/api/v1/movies/review", data)

}
updateReview(data){

return axios.put("http://localhost:5000/api/v1/movies/review", data)
}
deleteReview(id, userId){

return axios.delete(
"http://localhost:5000/api/v1/movies/review",
{data:{review_id: id, user_id: userId}}

)
}
getRatings(){

return axios.get("http://localhost:5000/api/v1/movies/ratings")

http://localhost:5000/api/v1/movies?$%7bby%7d=$%7bquery%7d&page=$%7bpage%7d%60

}
}
export default new MovieDataService()

Code Explanation
import axios from "axios"

We use a library called axios for sending get, post, put and delete request.
Let’s first install axios by running in Terminal:
npm install axios

The class MovieDataService contains functions which make the API calls to
the backend endpoints we have implemented and return the results.

getAll(page = 0){
return axios.get(`http://localhost:5000/api/v1/movies?page=${page}`)

}

getAll returns all the movies for a particular page (default page request is 0).
We put the API URL into the axios.get method. This endpoint is served by
the method apiGetMovies in MoviesController (refer to chapter 8).

get(id){
return axios.get(`http://localhost:5000/api/v1/movies/id/${id}`)

}

get(id) gets the specific movie with the supplied id. This endpoint is served
by the method apiGetMovieById in MoviesController (refer to chapter 12).

find(query, by = "title", page = 0){
return axios.get(

`http://localhost:5000/api/v1/movies?${by}=${query}&page=${page}`
)

}

find() connects to the same endpoint as getAll except that it has query which
consists of the user-entered search title, ratings (e.g. ‘G’) and page number.

The remaining four methods are for creating, updating and deleting a review
and to get all ratings. We will later revisit the entire flow from the frontend to
the backend after implementing the React frontend.

http://localhost:5000/api/v1/movies?$%7bby%7d=$%7bquery%7d&page=$%7bpage%7d%60

CHAPTER 17: MOVIESLIST COMPONENT
Let’s now implement the MoviesList component to consume the functionality
in MovieDataService. Components are meant to be responsible for mainly
rendering views supported by application logic for better user experience.
They don’t fetch data from the backend but rather delegate such tasks to
services.

We will carry on implementing our MoviesList component. Fill in the below
code into movies-list.js:
import React, {useState, useEffect } from 'react'
import MovieDataService from "../services/movies"
import { Link } from "react-router-dom"

const MoviesList = props => {

const [movies, setMovies] = useState([])
const [searchTitle, setSearchTitle] = useState("")
const [searchRating, setSearchRating] = useState("")
const [ratings, setRatings] = useState(["All Ratings"])

}

Code Explanation
import React, {useState, useEffect } from 'react'
import MovieDataService from "../services/movies"
import { Link } from "react-router-dom"

We import useState to create a series of state variables. We import useEffect
(which we will describe later) and also import MovieDataService and Link.
const MoviesList = props => {

const [movies, setMovies] = useState([])
const [searchTitle, setSearchTitle] = useState("")
const [searchRating, setSearchRating] = useState("")
const [ratings, setRatings] = useState(["All Ratings"])=

}

MoviesList is a functional component and receives and uses props. We use
the React useState hook to create the movies, searchTitle, searchRating and
ratings state variables. The searchTitle and searchRating state variables keep
track of what a user has entered into the search form fields in the Movies List
page.

Note that movies is default set to an empty array useState([]) . ratings is by
default set to an array with a value “All Ratings”. This is because when a user
first comes to the Movies List search form, the default value for search by
ratings is ‘All Ratings’ i.e. useState(["All Ratings"]). searchTitle and searchRating
are default set to an empty string, useState("").

useEffect to retrieveMovies and Ratings

Next, we add the useEffect hook and the retrieveMovies and retrieveRatings
methods as shown:
…
const MoviesList= props => {

const [movies, setMovies] = useState([])
const [searchTitle, setSearchTitle] = useState("")
const [searchRating, setSearchRating] = useState("")
const [ratings, setRatings] = useState(["All Ratings"])

useEffect(() =>{
retrieveMovies()
retrieveRatings()

},[])

const retrieveMovies = () =>{
MovieDataService.getAll()

.then(response =>{
console.log(response.data)
setMovies(response.data.movies)

})
.catch(e =>{

console.log(e)
})

}

const retrieveRatings = () =>{
MovieDataService.getRatings()

.then(response =>{
console.log(response.data)
 //start with 'All ratings' if user doesn't specify any ratings

setRatings(["All Ratings"].concat(response.data))
})
.catch(e =>{

console.log(e)
})

}

Code Explanation

useEffect(() =>{
retrieveMovies()
retrieveRatings()

},[])

The useEffect hook is called after the component renders. So if we want to
tell the component to perform some code after rendering, we include it here.
In our case, after the component renders, we want to retrieve movies and
ratings.

*Note that it is important that we specify an empty array in the second
argument of useEffect. When we do so, useEffect is called only once when
the component first renders. Without the second argument, useEffect is run on
every render of the component which we do not want since this will call
retrieveMovies and retrieveRatings multiple times unnecessarily. We will
later revisit useEffect to be called whenever the state changes.

const retrieveMovies = () =>{
MovieDataService.getAll()

.then(response =>{
console.log(response.data)
setMovies(response.data.movies)

})
.catch(e =>{

console.log(e)
})

}

retrieveMovies calls MovieDataService.getAll() which if you remember, has
the following implementation:

getAll(page = 0){
return http.get(`

localhost://localhost:5000/api/v1/movies?page=${page}`
)

}

getAll returns a promise with the movies retrieved from the database and we
set it to the movies state variable with setMovies(response.data.movies).

const retrieveRatings = () =>{
MovieDataService.getRatings()

.then(response =>{
console.log(response.data)
setRatings(["All Ratings"].concat(response.data))

})

.catch(e =>{
console.log(e)

})
}

In a similar fashion, retrieveRatings calls MovieDataService.getRatings to get
the list of distinct ratings from the database. We however concat the response
data to the [“All Ratings”] array. In case the user doesn’t specify any search
criteria in the ‘ratings’ drop down menu, it will be set to ‘All Ratings’.

Creating the Search Form

Now, let’s get down to creating the search movies form where a user can
search by title or ratings. We will first implement the below two methods,
onChangeSearchTitle and onChangeSearchRating. So add it to the bottom of
movies-list.js:

const onChangeSearchTitle = e => {
const searchTitle = e.target.value
setSearchTitle(searchTitle);

}

const onChangeSearchRating = e => {
const searchRating = e.target.value
setSearchRating(searchRating);

}

onChangeSearchTitle will be called whenever a user types into the search
title field. onChangeSearchTitle will then take the entered value and set it to
the component state. onChangeSearchRating works in the same fashion.

Form JSX Markup

Now, let’s get the JSX for a simple form from the React bootstrap site
(https://react-bootstrap.netlify.app/components/forms/) and put it into movies-
list.js. It will look something like:
import …
import Form from 'react-bootstrap/Form';
import Button from 'react-bootstrap/Button';
import Col from 'react-bootstrap/Col';
import Row from 'react-bootstrap/Row';
import Container from 'react-bootstrap/Container';

const MoviesList= props => {

https://react-bootstrap.netlify.app/components/forms/

…

return (
<div className="App">

<Container>
<Form>

<Row>
<Col>

<Form.Group>
<Form.Control

type="text"
placeholder="Search by title"
value={searchTitle}
onChange={onChangeSearchTitle}

/>
</Form.Group>
<Button

variant="primary"
type="button"
onClick={findByTitle}

>
Search

</Button>
</Col>
<Col>

<Form.Group>
<Form.Control

as="select" onChange={onChangeSearchRating} >
{ratings.map(rating =>{

return(
<option value={rating}>{rating}</option>

)
})}

</Form.Control>
</Form.Group>
<Button

variant="primary"
type="button"
onClick={findByRating}

>
Search

</Button>
</Col>

</Row>
</Form>

</Container>
</div>

);
}

* Alternatively, you can refer to my source code for the above

Code Explanation

This creates a simple React form with a search by title field and search by
ratings dropdown. We have used Row and Col to put the two search fields in
a single row and in side by side columns (fig. 1).

Figure 1

Note that you have to import the Form, Button, Container, Col and Row
components to use them.

<Form.Group>
<Form.Control

type="text"
placeholder="Search by title"
value={searchTitle}
onChange={onChangeSearchTitle}

/>
</Form.Group>

In the searchTitle FormControl, we set the field’s value to the searchTitle
state variable. So this field will always reflect the value in searchTitle. And
we set onChange to onChangeSearchTitle, so any value changes done by the
user entering in the field will call onChangeSearchTitle which will in turn
update searchTitle state variable. In essence, we have double binded this field
to the searchTitle state.

<Button
variant="primary"
type="button"
onClick={findByTitle}

>
Search

</Button>

The search Button calls the findByTitle method which we will implement
later.

<Form.Group>

<Form.Control
as="select" onChange={onChangeSearchRating} >

{ratings.map(rating =>{
return(

<option value={rating}>{rating}</option>
)

})}
</Form.Control>

</Form.Group>

We then have FormControl which is the dropdown field to select a movie
rating. To populate the option values for the dropdown, we use the map
function, where for each rating in ratings array, we return an option element
with the rating value for the select box (fig. 2).

Figure 2
<Button

variant="primary"
type="button"
onClick={findByRating}

>
Search

</Button>

The search Button for the rating dropdown calls the findByRating method
which we will implement later.

JSX Markup for Displaying Movies

Now, let’s display the list of movies like in figure 3.

Figure 3

Add the code in bold below to return:

…
import Card from 'react-bootstrap/Card’;

…
return (

<div className="App">
<Container>

<Form>
…

</Form>

<Row>
{movies.map((movie) =>{

return(
<Col>

<Card style={{ width: '18rem' }}>
<Card.Img src={movie.poster+"/100px180"} />
<Card.Body>

<Card.Title>{movie.title}</Card.Title>
<Card.Text>

Rating: {movie.rated}
</Card.Text>
<Card.Text>{movie.plot}</Card.Text>
<Link to={"/movies/"+movie._id} >View Reviews</Link>

</Card.Body>
</Card>

</Col>
)

})}
</Row>

</Container>
</div>

);

Code Explanation

We use the map function again where for each movie in movies, we return a
Card component which we take from React-bootstrap (https://react-
bootstrap.github.io/components/cards/ - fig. 4).

https://react-bootstrap.github.io/components/cards/

Figure 4

Each Card contains one movie with its:
- poster image: <Card.Img src={movie.poster+"/100px180"} /> ,
- title: <Card.Title>{movie.title}</Card.Title>
- rating: <Card.Text>Rating: {movie.rated} </Card.Text>
- plot: <Card.Text>{movie.plot}</Card.Text>
- “View Reviews” Link: <Link to={"/movies/"+movie._id} >View Reviews</Link>

You can view all of the movie’s properties back in MongoDB Atlas (fig. 5).

Figure 5

Next, let’s implement the findByTitle and findByRating functions.

findByTitle and findByRating functions

Add the following functions into movies-list.js:
const find =(query, by) =>{

MovieDataService.find(query,by)
.then(response =>{

console.log(response.data)
setMovies(response.data.movies)

})
.catch(e =>{

console.log(e)
})

}
const findByTitle = () => {

find(searchTitle, "title")
}
const findByRating = () => {

if(searchRating === "All Ratings"){
retrieveMovies()

}
else{

find(searchRating, "rated")
}

}

Code Explanation

const find =(query, by) =>{
MovieDataService.find(query,by)

.then(response =>{
console.log(response.data)
setMovies(response.data.movies)

})
.catch(e =>{

console.log(e)
})

}

The find function is supported by the findByTitle and findByRating methods.
find simply provides the search query value entered by the user and by which
field to search (i.e. title or rated) to MovieDataService.find:

find(query, by = "title", page = 0){
return axios.get(

`http://localhost:5000/api/v1/movies?${by}=${query}&page=${page}`
)

}

find() in turn calls the backend API.
const findByTitle = () => {

find(searchTitle, "title")
}

findByTitle is called by the ‘Search by title’s search button. It provides the
title value to be searched to find() and tells it to search by ‘title’.

const findByRating = () => {
if(searchRating === "All Ratings"){

retrieveMovies()
}
else{

find(searchRating, "rated")
}

}

findByRating is called by the ‘Search by rating’s search button. It provides
the rating value to be searched to find() and tells it to search by ‘rated’.
However, if the user did not specify any rating value, the search value
defaults to “All Ratings” and simply retrieves all movies.

Testing your App

When you run your app now, it should return a list of movies (fig. 6):

Figure 6

Try entering search terms in ‘Search by title’ or ‘Search by rating’ and it will
return the related results (fig. 7, 8)! Note that some movies do not have a
poster image.

Figure 7 - Results for search by title: ‘train’

Figure 8 - Results for search by rating: ‘PG’

Currently, we are displaying just the first twenty results. Later on, we will
consider how to retrieve the next page’s results. Now, let’s carry on with
viewing the reviews of a particular movie.

CHAPTER 18: MOVIE COMPONENT
Currently, when we click on ‘View Reviews’, it just shows a message. We
will create a Movie component which shows the individual movie along with
its reviews.

In the components folder, in movie.js, fill in the following code:
import React, {useState, useEffect} from 'react'
import MovieDataService from '../services/movies'
import { Link } from 'react-router-dom'

const Movie = props => {

const [movie, setMovie] = useState({
id: null,
title: "",
rated:"",
reviews:[]

})

const getMovie = id =>{
MovieDataService.get(id)

.then(response => {
setMovie(response.data)
console.log(response.data)

})
.catch(e =>{

console.log(e)
})

}

useEffect(()=>{
getMovie(props.match.params.id)

},[props.match.params.id])

return (
<div>
</div>

);
}

export default Movie;

Code Explanation
const [movie, setMovie] = useState({

id: null,
title: "",

rated:"",
reviews:[]

})

We have a movie state variable to hold the specific movie we are currently
showing in the Movie component. We set its initial values to null, empty
strings (“”) or an empty array [].

const getMovie = id =>{
MovieDataService.get(id)

.then(response => {
setMovie(response.data)
console.log(response.data)

})
.catch(e =>{

console.log(e)
})

}

The getMovie method calls get() of MovieDataService (refer to chapter 16)
which in turn calls the API route:

get(id){
return axios.get(`http://localhost:5000/api/v1/movies/id/${id}`)

}

getMovie will be called by useEffect:
useEffect(()=>{

getMovie(props.match.params.id)
},[props.match.params.id])
// won't call getMovie multiple times unless id is updated.

Remember that useEffect is called when the component renders. This time,
however, we provide props.match.params.id into the second argument array. This
means that useEffect should be called when the component first renders, and
also each time the value of props.match.params.id (which holds that movie id)
changes.
Thus, we avoid calling getMovie multiple times for the same movie id unless
it is updated (which means we are displaying a different movie).

In essence, if the 2nd argument of useEffect contains an array of variables and
any of these variables change, useEffect will be called.

To summarize:

useEffect without a second argument, is called each time a state change
occurs in its body.
useEffect with an empty array in its second argument gets called only the first
time the component renders.
useEffect with a state variable in the array gets called each time the state
variable changes.

Now, where did we populate props.match.params.id ?

Remember back in App.js, we have the Route for the Movie component:
<Route path="/movies/:id/" render={(props)=>

<Movie {...props} user={user} />
}>

The route includes an id parameter for the movie id. So the route to get a
specific movie will be something like:
http://localhost:5000/movies/573a1390f29313caabcd6223

props.match.params.id will then give us 573a1390f29313caabcd6223.

Movie Component Markup

Next, let’s implement the frontend for the movie component. The frontend
will look something like:

http://localhost:5000/movies/573a1390f29313caabcd6223

Figure 1

So in components/movie.js, import the following React-bootstrap
components:
import Card from 'react-bootstrap/Card';
import Container from 'react-bootstrap/Container';
import Image from 'react-bootstrap/Image';
import Col from 'react-bootstrap/Col';
import Row from 'react-bootstrap/Row';
import Button from 'react-bootstrap/Button';
import Media from 'react-bootstrap/Media';

And fill in the below markup into the return method of movie.js:
return (

<div>
<Container>

<Row>
<Col>

<Image src={movie.poster+"/100px250"} fluid />
</Col>
<Col>

<Card>
<Card.Header as="h5">{movie.title}</Card.Header>
<Card.Body>

<Card.Text>
{movie.plot}

</Card.Text>
 {props.user &&
<Link to={"/movies/" + props.match.params.id + "/review"}>

Add Review
</Link>}

</Card.Body>
</Card>

</br>
<h2>Reviews</h2>

</Col>
</Row>

</Container>
</div>

);

Code Explanation

We essentially have two columns.
…
<Col>

<Image src={movie.poster+"/100px250"} fluid />
</Col>
<Col>

<Card>
 …

</Card>
…
</Col>

The first column contains the movie poster (if it exists) and the second
column show the movie details in a Card component.

 {props.user &&
<Link to={"/movies/" + props.match.params.id + "/review"}>

Add Review
</Link>}

In the Card component, if the user is logged in, i.e. props.user is true, we
include a link to ‘Add Review’ which we will implement later. Next, let’s
implement the listing of reviews.

CHAPTER 19: LISTING REVIEWS
We will be listing the reviews under the movie plot (fig. 1).

Figure 1

To do so, in components/movie.js, add the below mark up in bold:
<Container>

<Row>
…
<Col>

<Card>
…

</Card>
<h2>Reviews</h2>

</br>
{movie.reviews.map((review, index)=>{

return (
<Media key={index}>

<Media.Body>
<h5>{review.name + " reviewed on " + review.date}</h5>
<p>{review.review}</p>
{props.user && props.user.id === review.user_id &&

<Row>

<Col><Link to={{
pathname:"/movies/"+

props.match.params.id+
"/review",

state: {currentReview: review}
}}>Edit</Link>

</Col>
<Col><Button variant="link">Delete</Button></Col>

</Row>
}

</Media.Body>
</Media>

)
})}

</Col>
</Row>

</Container>

Code Explanation

We access the reviews array and using map, for each review, render a Media
component from React-bootstrap (fig. 2).

Figure 2
{props.user && props.user.id === review.user_id &&

<Row>
<Col><Link to={{

pathname: "/movies/" + props.match.params.id +
"/review",

state: {currentReview: review}
}}>Edit</Link></Col>

<Col><Button variant="link">Delete</Button></Col>
</Row>

}

A user can only delete reviews they have posted. They can’t delete/edit
other’s reviews. Thus, we first check to see if a user is logged in(props.user is
true). And only if the logged in user id is the same as the review user id
(props.user.id === review.user_id) , do we render the Edit/Delete buttons.

Testing our App

If you test your app, now, you will be able to go to a specific movie page and
see its reviews. You won’t be able to see the Edit/Delete buttons at the
moment because we have not implemented login. We will do that in the next
chapter.

Formatting the Date

Before we go on to the next chapter, our current review date is in timestamp
format e.g. 2021-05-10T00:08:50.082Z. Let’s format the review date(s) into a
presentable manner. We will be using a library called moment js, a
lightweight JavaScript library for parsing, validating and formatting dates.

In Terminal, in your project directory, install moment js with:
npm i moment --save

In movie.js, import moment with:
…
import moment from 'moment’

…

Then, pass your date format to the moment method:
<h5>
{review.name+" reviewed on "} {moment(review.date).format("Do MMMM YYYY")}

</h5>

…

And when you run your app, the review dates should be nicely formatted (fig.
3).

Figure 3

CHAPTER 20: LOGIN COMPONENT
We won’t be doing a full feature authentication system in this section, but it
serves as a template for you to fill in your own full-fledged authentication
implementation.
Fill in login.js with the following code:
import React, {useState} from 'react'
import Form from 'react-bootstrap/Form';
import Button from 'react-bootstrap/Button';

const Login = props => {

const [name, setName] = useState("")
const [id, setId] = useState("")

const onChangeName = e => {
const name = e.target.value
setName(name);

}

const onChangeId = e => {
const id = e.target.value
setId(id);

}

const login = () => {
props.login({name: name, id: id})
props.history.push('/')

}

return(
<div>

<Form>
<Form.Group>

<Form.Label>Username</Form.Label>
<Form.Control

type="text"
placeholder="Enter username"
value={name}
onChange={onChangeName}

/>
</Form.Group>
<Form.Group>

<Form.Label>ID</Form.Label>
<Form.Control

type="text"
placeholder="Enter id"

value={id}
onChange={onChangeId}

/>
</Form.Group>
<Button variant="primary" onClick={login}>

Submit
</Button>

</Form>
</div>

)
}

export default Login;

* Refer to the source code (www.greglim.co/p/mern) if you prefer to copy
and paste

Code Explanation

const [name, setName] = useState("")
const [id, setId] = useState("")

We set the initial name and id to be empty strings (“”). Our simple login form
consists of a username and id fields. The onChangeName and onChangeId
methods bind the field values to the name and id state variables. They work
in a similar fashion to the form we have earlier implemented in MoviesList,
so I won’t explain further.

const login = () => {
props.login({name: name, id: id})
props.history.push('/')

}

When we click on the Submit button, it calls login. Notice that we call
props.login. But who passes this login function into the Login component? If
you recall in App.js, we have the following route:

<Route path="/login" render={(props)=>
<Login {...props} login={login} />

}>

And login is defined in App.js as:
async function login(user = null){

setUser(user)
}

So, from the Login component, we call the login function in App.js and set
App’s user state. We are thus then able to pass on the logged-in user to other
components e.g. AddReview, Movie.

After login, we then redirect to the main page with props.history.push('/').

Testing your App

In your app, try logging in. Go to a specific movie with reviews (refer back to
chapter 11 on how to create reviews via Insomnia) and you will be able to see
the Edit/Delete buttons for each review (fig. 1).

Figure 1

CHAPTER 21: ADDING AND EDITING

REVIEWS
Now, let’s go on to implement adding a review. When a user logs in, goes to
a specific movie page and clicks ‘Add Review’ (fig. 1), we will render the
AddReview component for the user to submit a review (fig. 2).

Figure 1

Figure 2

We will also use the AddReview component to edit a review. That is, when a
user clicks on the ‘Edit’ link on an existing review (fig. 3).

Figure 3

When editing, we will render the AddReview component but with the header
‘Edit Review’ (fig. 4). The existing review text will be shown where users
can then edit and submit.

Figure 4

So, our AddReview component will allow us to both add and edit reviews.
Let’s first go through the code to add a review.

Adding a Review

In add-review.js, fill in the following code:
import React, { useState } from 'react'
import MovieDataService from "../services/movies"
import { Link } from "react-router-dom"
import Form from 'react-bootstrap/Form';
import Button from 'react-bootstrap/Button';

const AddReview = props => {

let editing = false
let initialReviewState = ""

const [review, setReview] = useState(initialReviewState)
// keeps track if review is submitted
const [submitted, setSubmitted] = useState(false)

const onChangeReview = e => {
const review = e.target.value
setReview(review);

}

const saveReview = () => {
var data = {

review: review,
name: props.user.name,
user_id: props.user.id,
movie_id: props.match.params.id // get movie id direct from url

}

MovieDataService.createReview(data)
.then(response => {

setSubmitted(true)
})
.catch(e =>{

console.log(e);
})

}

return(
<div>
{submitted ? (

<div>
<h4>Review submitted successfully</h4>
<Link to={"/movies/"+props.match.params.id}>

Back to Movie
</Link>

</div>
):(

<Form>
<Form.Group>

<Form.Label>{editing ? "Edit" : "Create"} Review</Form.Label>
<Form.Control

type="text"
required
value={review}
onChange={onChangeReview}

/>
</Form.Group>
<Button variant="primary" onClick={saveReview}>

Submit
</Button>

</Form>
)}

</div>
)

}

export default AddReview;

* Refer to the source code (www.greglim.co/p/mern) if you prefer to copy
and paste

Code Explanation
let editing = false
let initialReviewState = ""

const [review, setReview] = useState(initialReviewState)
const [submitted, setSubmitted] = useState(false)

The editing Boolean variable will be set to true if the component is in
‘Editing’ mode. False means we are adding a review.

We have a review state variable set to initialReviewState . In edit mode,

initialReviewState will be set to the existing review text.

We also have a submitted state variable to keep track if the review is
submitted.

const onChangeReview = e => {
const review = e.target.value
setReview(review);

}

The onChangeReview keeps track of the user-entered review value in the
field:

<Form.Control
type="text"
required
value={review}
onChange={onChangeReview}

/>

This should be familiar to you as we have used this a few times.
const saveReview = () => {

var data = {
review: review,
name: props.user.name,
user_id: props.user.id,
movie_id: props.match.params.id // get movie id direct from url

}

MovieDataService.createReview(data)
.then(response => {

setSubmitted(true)
})
.catch(e =>{

console.log(e);
})

}

saveReview is called by the submit button’s onClick={saveReview}. In
saveReview, we first create a data object containing the review’s properties,
e.g. the review text, user name etc.

name: props.user.name,
user_id: props.user.id,

We get name and user_id from props as this is passed into the AddReview
component back in App.js:

<Route path="/movies/:id/review" render={(props)=>
<AddReview {...props} user={user} />

}>

We get movie_id(movie_id: props.match.params.id) direct from the url back in
movie.js:

<Link to={"/movies/" + props.match.params.id + "/review"}>
Add Review

</Link>

We then call MovieDataService.createReview(data) which we implemented earlier in
movie.js with the following code:

createReview(data){
return axios.post("http://localhost:5000/api/v1/movies/review", data)

}

This then routes to ReviewsController in our backend and calls apiPostReview
which then extracts data from the request ’ s body parameter.
import ReviewsDAO from '../dao/reviewsDAO.js'

export default class ReviewsController{
static async apiPostReview(req,res,next){

try{
const movieId = req.body.movie_id
const review = req.body.review
const userInfo = {

name: req.body.name,
_id: req.body.user_id

}
…

Hopefully, you can see better how the whole flow in a MERN stack works
now. Let ’ s go on to implement editing a review.

Editing a Review

To have our AddReview component edit a review, add in two sections of code
as shown below:
const AddReview = props => {

let editing = false
let initialReviewState = ""

if(props.location.state && props.location.state.currentReview){
editing = true

initialReviewState = props.location.state.currentReview.review
}

const [review, setReview] = useState(initialReviewState)
// keeps track is review is submitted
const [submitted, setSubmitted] = useState(false)

…
…
…

const saveReview = () => {
var data = {

review: review,
name: props.user.name,
user_id: props.user.id,
movie_id: props.match.params.id // get movie id direct from url

}

if(editing){
// get existing review id
data.review_id = props.location.state.currentReview._id
MovieDataService.updateReview(data)

.then(response =>{
setSubmitted(true);
console.log(response.data)

})
.catch(e =>{

console.log(e);
})

}
else{

MovieDataService.createReview(data)
.then(response => {

setSubmitted(true)
console.log(response.data)

})
.catch(e =>{

console.log(e);
})

}
}

Code Explanation
if(props.location.state && props.location.state.currentReview){

editing = true
initialReviewState = props.location.state.currentReview.review

}

We first check if a state is passed into AddReview. If you recall in movie.js,
we pass in a state in the link to edit:

<Col><Link to={{
pathname: "/movies/" + props.match.params.id + "/review",
state: {

currentReview: review
}

}}>Edit</Link></Col>

Thus, in AddReview, we check if a state is passed in and contains a
currentReview property. If so, set editing to true and the initialReviewState to
currentReview’s review.

if(editing){
// get existing review id
data.review_id = props.location.state.currentReview._id
MovieDataService.updateReview(data)

.then(response =>{
setSubmitted(true);
console.log(response.data)

})
.catch(e =>{

console.log(e);
})

}

And if editing is true, we get the existing review id and call updateReview in
MovieDataService:

updateReview(data){
return axios.put("http://localhost:5000/api/v1/movies/review", data)
}

The above calls the apiUpdateReview method in ReviewsController in the
backend similar to how we call apiPostReview for adding a review:

static async apiUpdateReview(req,res,next){
try{

const reviewId = req.body.review_id
const review = req.body.review

const date = new Date()

const ReviewResponse = await ReviewsDAO.updateReview(
reviewId,
req.body.user_id,
review,
date

)
…

If you recall, apiUpdateReview extracts the movieId and review text similar to
what we have done in posting a review and then calls updateReview and pass
in the user_id to ensure that the user who is updating the view is the one who
has created it.

Running our App

Now, let ’ s run our app. Login and go to a movie of your choice. Click on
the ‘ Add Review ’ link and you should be able to add a review. The new
review should appear in the movie page (fig. 5).

Figure 5

Having added the review, and if you are logged in, you will be able to edit
the review by clicking on the ‘ Edit ’ link (fig. 6). And if you check your
MongoDB, the data is updated there.

Figure 6

When you go back to your app and logout, you can ’ t see the edit and delete
buttons anymore. Next, we will finish up the implementation of deleting a
review.

CHAPTER 22: DELETING A REVIEW
We are currently just rendering a delete button in the Movie component
movie.js:
<Col>

<Button variant="link">Delete
</Button>

</Col>

Let ’ s now implement its functionality by adding the below in bold:
<Col>

<Button variant="link" onClick={() => deleteReview(review._id, index)}>
Delete

</Button>
</Col>

Next, add in the codes for deleteReview just above return:
const deleteReview = (reviewId, index) =>{

MovieDataService.deleteReview(reviewId, props.user.id)
.then(response => {

setMovie((prevState) => {
prevState.reviews.splice(index,1)
return({

...prevState
})

})
})
.catch(e =>{

console.log(e)
})

}

return(
…

)

Code Explanation
<Button variant="link" onClick={() => deleteReview(review._id, index)}>

In the delete button, we pass in the review id and the index we got from the
movie.reviews.map function into deleteReview.

In deleteReview, we then call deleteReview in MovieDataService which calls

the delete API endpoint we implemented earlier:

deleteReview(id, userId){
return axios.delete(

 `http://localhost:5000/api/v1/movies/review`,
 {data:{review_id: id, user_id: userId}}

)
}

Remember that the delete endpoint is supported by apiDeleteReview in
ReviewsController in the backend:

static async apiDeleteReview(req,res,next){
try{

const reviewId = req.body.review_id
const userId = req.body.user_id

/* ensure user who is deleting the review is the one who has created the review */
const ReviewResponse = await ReviewsDAO.deleteReview(

reviewId,
userId,

)
…

Back in movie.js, we then add a callback function that is called when
deleteReview completes:
const deleteReview = (reviewId, index) =>{

MovieDataService.deleteReview(reviewId, props.user.id)
.then(response => {

setMovie((currState) => {
currState.reviews.splice(index,1)
return({

...currState
})

})
})

…

In the callback, we get the reviews array in the current state. We then provide
the index of the review to be deleted to the splice method to remove that
review. We then set the updated reviews array as the state.

Running your App

When you run your app now, log in and go to a specific movie, a user will be
able to delete reviews they have posted. We have almost completed the entire

functionality of our app using the MERN stack. What ’ s left are some minor
improvements to our app. Let ’ s first see how to get the next page ’ s results
in the next chapter.

CHAPTER 23: GET NEXT PAGE ’ S

RESULTS
Currently, we show just the first twenty results. We will add a ‘ Get next 20
results ’ link at the bottom to retrieve the next page ’ s result (fig. 1).

Figure 1

Our code in the backend has already made it easy for us to retrieve results by
page. If you recall, in MovieDataService, we have:

getAll(page = 0){
return axios.get(`https://localhost:5000/api/v1/movies?page=${page}`)

}
…

find(query, by = "title", page = 0){
return axios.get(

`https:// localhost:5000/api/v1/movies?${by}=${query}&page=${page}`
)

}

This allows us to retrieve the results of a particular page by providing the
page argument. This is supported by MoviesDAO in the backend, where we
have:

cursor = await movies.find(query).limit(moviesPerPage).skip(moviesPerPage * page)

to retrieve the results of a particular page by providing moviesPerPage and
page.

Getting of Next Results for getAll
Let ’ s first implement the getting of next results for getAll. That is, when a
user doesn ’ t specify any search query and just visits the home page.

In our MoviesList component movies-list.js, add the following in bold:
…
const MoviesList= props => {

const [movies, setMovies] = useState([])
const [searchTitle, setSearchTitle] = useState("")
const [searchRating, setSearchRating] = useState("")
const [ratings, setRatings] = useState(["All Ratings"])

const [currentPage, setCurrentPage] = useState(0)
const [entriesPerPage, setEntriesPerPage] = useState(0)

useEffect(() =>{
retrieveMovies()
retrieveRatings()

},[])

useEffect(() =>{
retrieveMovies()

},[currentPage])

const retrieveMovies = () =>{
MovieDataService.getAll(currentPage)

.then(response =>{
setMovies(response.data.movies)
setCurrentPage(response.data.page)
setEntriesPerPage(response.data.entries_per_page)

})
.catch(e =>{

console.log(e)
})

}

…

And in return(), add:
return (

<div className="App">
<Container>

<Form>
…

</Form>

<Row>
{movies.map((movie) =>{

…
})}

</Row>

Showing page: {currentPage}.
<Button

variant="link"
onClick={() => {setCurrentPage(currentPage + 1)}}

>
Get next {entriesPerPage} results

</Button>
</Container>

</div>
);

Code Explanation
const [currentPage, setCurrentPage] = useState(0)
const [entriesPerPage, setEntriesPerPage] = useState(0)

We declare two state variables, currentPage (to keep track of which page we
are currently displaying) and entriesPerPage. The two state variables are
being populated in retrieveMovies:

const retrieveMovies = () =>{
MovieDataService.getAll(currentPage)

.then(response =>{
setMovies(response.data.movies)
setCurrentPage(response.data.page)
setEntriesPerPage(response.data.entries_per_page)

})
.catch(e =>{

console.log(e)
})

}

Remember that the JSON object returned from calling
MovieDataService.getAll includes the properties page and entries_per_page
(fig. 2):

Figure 2

Importantly, note that we provide the currentPage argument to
MovieDataService.getAll(currentPage) to get results for that particular page.

We then add an useEffect hook:
useEffect(() =>{

retrieveMovies()
},[currentPage])

Because we specified currentPage in the 2nd argument array, each time
currentPage changes in value, this useEffect will be trigged and call
retrieveMovies with the updated currentPage value.

Showing page: {currentPage}.
<Button

variant="link"
onClick={() => {setCurrentPage(currentPage + 1)}}

>
Get next {entriesPerPage} results

</Button>

Finally, in return, we show currentPage to the user and provide a link button
that displays “ Get next … results ” . When the link is clicked, it increments
currentPage state variable and thus triggers useEffect and calls
retrieveMovies.

With this, we have implemented getting of next page ’ s result for getAll.
Now what about getting the next page ’ s result when a user retrieves movies
using search by title or search by rating? Let ’ s implement it in the next
chapter.

CHAPTER 24: GET NEXT PAGE ’ S

RESULTS – SEARCH BY TITLE AND

RATING

Our MoviesList component currently has two modes of retrieval. One is by
calling getAll. The other is using find(). We have implemented getting next
page ’ s results for getAll. To do the same for find, we will first need another
state variable to tell us which mode of retrieval a user is currently using. And
whenever the user changes the retrieval mode, we will set currentPage back
to page 0.

So, in movies-list.js, add the codes in bold:
…
const MoviesList= props => {

…
const [currentPage, setCurrentPage] = useState(0)
const [entriesPerPage, setEntriesPerPage] = useState(0)
const [currentSearchMode, setCurrentSearchMode] = useState("")

useEffect(() =>{
setCurrentPage(0)

},[currentSearchMode])

useEffect(() =>{
retrieveMovies()
retrieveNextPage()

},[currentPage])

const retrieveNextPage = () => {
if(currentSearchMode === "findByTitle")

findByTitle()
else if(currentSearchMode === "findByRating")

findByRating()
else

retrieveMovies()
}
…

const find =(query, by) =>{
MovieDataService.find(query,by,currentPage)

.then(response =>{
setMovies(response.data.movies)

})

.catch(e =>{
console.log(e)

})
}

Code Explanation
const [currentSearchMode, setCurrentSearchMode] = useState("")

useEffect(() =>{
setCurrentPage(0)

},[currentSearchMode])

We declare a new state variable currentSearchMode which contains the value
either “” , “ findByTitle ” or “ findByRating ” .

We add a useEffect that whenever currentSearchMode changes, reset the
currentPage to zero since it ’ s a new search.

const retrieveNextPage = () => {
if(currentSearchMode === "findByTitle")

findByTitle()
else if(currentSearchMode === "findByRating")

findByRating()
else

retrieveMovies()
}

We have a new function retrieveNextPage which depending on the
currentSearchMode, calls the relevant retrieval functions.

useEffect(() =>{
retrieveMovies()
retrieveNextPage()

},[currentPage])

We then change the current useEffect for currentPage to call
retrieveNextPage instead of retrieveMovies.

const find =(query, by) =>{
MovieDataService.find(query,by,currentPage)

And we add the currentPage argument to the call to MovieDataService.find.

Next, we have to set the current search mode in the various method calls.

Setting the Current Search Mode

In retrieveMovies, add:
const retrieveMovies = () =>{

setCurrentSearchMode("")
MovieDataService.getAll(currentPage)

.then(response =>{
…

}

And in findByTitle and findByRating, add:
const findByTitle = () => {

setCurrentSearchMode("findByTitle")
find(searchTitle, "title")

}
const findByRating = () => {

setCurrentSearchMode("findByRating")
if(searchRating === "All Ratings"){

retrieveMovies()
}
else{

find(searchRating, "rated")
}

}

With the above, our app can differentiate the current search mode. And if you
run your app now, you will be able to retrieve the next page results
successfully no matter which mode of retrieval you are using. What ’ s next
will be to deploy both the backend and frontend so that users can access it
over the cloud. In the next chapter, we will do so for the backend.

CHAPTER 25: DEPLOYING BACKEND ON

HEROKU
We have finished creating our entire app using the MERN stack. Now, we
will show you how to deploy your backend to the web.

We will be deploying our Node.js backend to Heroku’s servers to host and
run on the Internet. The backend will connect to our cloud MongoDB Atlas
database. The deployment process is relatively straightforward and you can
simply follow along the instructions in the documentation to deploy Node.js
apps on Heroku (https://devcenter.heroku.com/ - fig. 1).
But we will still walk you through the deployment process in this chapter.

Figure 1

First, you will need a Heroku account. So, go ahead and sign up if you don’t
have an account.

Next, we need to install the Heroku Command Line Interface for creating and
managing our Express apps on Heroku (fig. 2).

https://devcenter.heroku.com/

Figure 2

When the installation completes, we can start using the heroku command
from our Terminal. Type heroku login and a web browser will be opened to
the Heroku login page (fig. 3).

Figure 3

If the browser is already logged into Heroku, click ‘Log In’.

Making our App ‘Heroku Ready’
Before we start deploying to Heroku, we have to make our app ‘Heroku
ready’. We do so in the following sections by:

- adding a Procfile
- adding our Node.js version and start script to package.json
- listening on the correct port and
- specify the .gitignore file

Add a Procfile

In our app directory, create a file named Procfile (capital P, without a file
extension). This file will be run when Heroku starts our app. In our simple
app, this file will only be one line. Copy the below line into Procfile:
web: node index.js

web refers to the process type (the only process type that can receive HTTP
traffic from the web). The command after web i.e. node index.js is run on the
Heroku server.

package.json

Next, add the version of Node.js that your app requires in package.json. That
is, find out the version of Node you are running using node --version, and add
it to your package.json. Also add the start under “scripts” for Heroku to start
our app via index.js.

An example is shown below in bold:
…

"license": "MIT",
"engines":{

"node": "14.16.0"
},
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",
"start": "node index.js"

},
"author": "Start Bootstrap",
"contributors": [

"David Miller (http://davidmiller.io/)"
],

…

.gitignore

Next, if we have not already done so, create a file .gitignore in our app
directory. This file tells Git to ignore whatever is specified in it from being
pushed onto the server. And because we don’t need to push node_modules,
add node_modules to .gitignore

With these steps, our app is now ‘Heroku ready’ and we can go ahead to
deploy our app.

Deployment
For deployment, if you haven’t already, you need to have the git version
control system installed. Install git by following the instructions in https://git-
scm.com/book/en/v2/Getting-Started-Installing-Git and then setting up git for
the first time (https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-
Setup).

When git is installed and setup, set up a git project in the app’s root directory
with:
git init

Next, use:
git add .

to add all of our project files. Then to commit the changes to your Git project,
run:
git commit -m “Initial commit”

You will see in the logs something like:
Created initial commit 5df2d09: My first commit
44 files changed, 8393 insertions(+), 0 deletions(-)
create mode 100644 README
create mode 100644 Procfile
create mode 100644 app/controllers/source_file
...

Next, run:
heroku create

This creates a new empty application on Heroku with an associated empty
Git repository. A new URL for your Heroku app will also be setup (fig. 4).

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

Figure 4

You can change the URL or associate a domain name you own with the
Heroku address but it is beyond the scope of this book.

Now, we push our code to the remote Git repository that we have just created
with:
git push heroku master

This will push the code to the Heroku servers and setup our app’s
dependencies on them. Going forward when there are code changes in our
app, run git push heroku master again to re-deploy.

And if you go to the URL generated for you and append /api/v1/movies e.g.:

https://guarded-savannah-47368.herokuapp.com/api/v1/movies/

you will see the movies’ data results!

In other words, previously, you accessed the API on your local machine with
http://localhost:5000/api/v1/movies for example. Now, you access it using
the URL Heroku has generated for you. And you can stop the Node process
running on your local machine.

Changes to Frontend React Code

After we deploy our frontend React code, we must ensure any requests we
are sending from the client-side is changed to use our Heroku generated URL
now instead of localhost. Thus, change the hostname in your React frontend,
movies.js under services folder. E.g.
class MovieDataService{

getAll(page = 0){
return axios.get(`

https://guarded-savannah-47368.herokuapp.com/api/v1/movies?page=${page}
`)

}
…

And also make sure that you are using https instead of just http as content
must be served over secure https.

https://guarded-savannah-47368.herokuapp.com/api/v1/movies/
http://localhost:5000/api/v1/movies
https://guarded-savannah-47368.herokuapp.com/api/v1/movies?page=$%7bpage%7d

CHAPTER 26: HOSTING AND DEPLOYING

OUR REACT FRONTEND
In this section, we will deploy our React frontend to the Internet to share it
with the world. We are going to use Netlify (netlify.com – fig.1) for our
deployment.

Figure 1

Go to netlify.com and create a free account or log in if you already have one.

When you log in, a list will show any deployed apps that you have. In your
case, it will be empty since this is probably your first time deploying on
Netlify. At the bottom, there will be a box with the message, “Want to deploy
a new site without connecting to Git? Drag and drop your site output folder
here” (fig. 2).

Figure 2

Go back to the Terminal and navigate to the frontend folder. Build your
React application with the command:
npm run build

This will create a build version of React that we can deploy on the web.
When the build is finished, you will be able to see a build folder in the
directory.

Select the build folder and drag and drop it into the box we saw earlier in
Netlify. Netlify will take a few seconds and then generate a url where you can
access the page (fig. 3).

Figure 3

If you wish to have your own custom domain, you can go to ‘Add custom
domain’ to purchase one.

And there you have it! Both your MERN frontend and backend are deployed
to the app, meaning that your fully functioning MERN app is live and
running.

Final Words
We have gone through quite a lot of content to equip you with the skills to
create a MERN stack app.

Hopefully, you have enjoyed this book and would like to learn more from
me. I would love to get your feedback, learning what you liked and didn't for
us to improve.

Please feel free to email me at support@i-ducate.com to get updated versions
of this book.

If you didn't like the book, or if you feel that I should have covered certain
additional topics, please email us to let us know. This book can only get
better thanks to readers like you.

If you like the book, I would appreciate if you could leave us a review too.
Thank you and all the best for your learning journey in MERN stack
development!

mailto:support@i-ducate.com

ABOUT THE AUTHOR

Greg Lim is a technologist and author of several programming books. Greg
has many years in teaching programming in tertiary institutions and he places

special emphasis on learning by doing.

Contact Greg at support@i-ducate.com or http://www.greglim.co/

mailto:support@i-ducate.com
http://www.greglim.co/

	Preface
	Chapter 1: Introduction
	Chapter 2: MongoDB Overview
	Chapter 3: Setting Up MongoDB Atlas Cloud Database
	Chapter 4: Adding Sample Data
	Chapter 5: Setting Up Our Node.js, Express Backend
	Chapter 6: Creating Our Backend Server
	Chapter 7: Creating the Movies Data Access Object
	Chapter 8: Creating the Movies Controller
	Chapter 9: Testing Our Backend API
	Chapter 10: Leaving Movie Reviews
	Chapter 11: Testing the Reviews API
	Chapter 12: Route to Get a Single Movie and Its Ratings
	React Frontend
	Chapter 13: Introduction to React
	Chapter 14: Create Navigation Header Bar
	Chapter 15: Defining Our Routes
	Chapter 16: MovieDataService: Connecting to the Backend
	Chapter 17: MoviesList Component
	Chapter 18: Movie Component
	Chapter 19: Listing Reviews
	Chapter 21: Adding and Editing Reviews
	Chapter 22: Deleting a Review
	Chapter 23: Get Next Page’s Results
	Chapter 24: Get Next Page’s Results – Search By Title and Rating
	Chapter 25: Deploying Backend on Heroku
	Chapter 26: Hosting and Deploying our React Frontend
	About the Author

