

2

MERN	Quick	Start	Guide

	

	

	

	

	

	

	

	

	

	

Build	web	applications	with	MongoDB,	Express.js,	React,
and	Node

	

	

	

	

	

3

	

	

	

	

	

Eddy	Wilson	Iriarte	Koroliova

	

	

	

	

	

	

	

	

	

	

	

	

4

BIRMINGHAM	-	MUMBAI

5

MERN	Quick	Start
Guide
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any
means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or
reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing	or
its	dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this
book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book
by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Ashwin	Nair
Acquisition	Editor:	Nigel	Fernandes
Content	Development	Editor:	Roshan	Kumar
Technical	Editor:	Shweta	Jadhav
Copy	Editor:	Safis	Editing
Project	Coordinator:	Hardik	Bhinde
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Jason	Monteiro
Production	Coordinator:	Shantanu	Zagade

First	published:	May	2018

Production	reference:	1310518

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78728-108-0

www.packtpub.com

http://www.packtpub.com

6

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000
books	and	videos,	as	well	as	industry	leading	tools	to	help	you	plan
your	personal	development	and	advance	your	career.	For	more
information,	please	visit	our	website.

https://mapt.io/

7

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical
eBooks	and	Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

8

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book
published,	with	PDF	and	ePub	files	available?	You	can	upgrade	to	the
eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,	you	are
entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical
articles,	sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive
discounts	and	offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

9

Contributors

10

About	the	author
Eddy	Wilson	Iriarte	Koroliova	has	worked	and	led	the	development
of	a	SaaS	web	application	for	the	financial	sector	in	2012	with	the
LAMP	stack	for	4	years.	Since	2014,	he	has	been	working	as	a	senior
full-stack	developer	and	JavaScript	specialist	with	the	MERN	stack,	for
the	development	of	enterprise	web	applications	for	different	sectors.

Eddy	travels	frequently	and	mostly	works	remotely.	He	speaks	Spanish,
English,	and	Russian,	and	he	is	currently	learning	Chinese,	which	has
allowed	him	to	work	in	different	team	environments	and	communicate
better	with	clients	and	co-workers.

Special	thanks	to	my	partner	in	life,	Huang	Jingxuan,	for	always	being	there	and	for	supporting	me
not	only	while	writing	this	book	but	also	during	the	different	stages	of	my	life	and	development	of	my
career.
A	big	thank	you	to	my	family	for	their	moral	and	financial	support	while	starting	my	career	as	a
developer.

11

About	the	reviewer
Chance	is	passionate	about	the	intersection	of	technology,
collaboration,	and	education.
He	is	the	founder	of	Chingu,	a	global	collaboration	platform	for	tech-
learners,	which	has	brought	together	thousands	of	developers,
designers,	and	data	scientists	from	140	countries	to	learn	and	build
together.

I'd	like	to	thank	Eddy	Wilson	for	writing	this	book,	Simon	Van	den	Broeck	for	his	edit	contributions,
and	the	Chingu	community!

	

	

	

12

What	this	book	covers
Chapter	1,	Introduction	to	MERN	Stack,	provides	an	introduction	to	the
MERN	stack	and	the	MVC	architectural	pattern.	It	covers	installation
of	NodeJS	and	MongoDB	as	well	as	installing	NPM	packages	and	an
example	of	usage.	These	constitute	the	base	for	all	the	book's	recipes.

Chapter	2,	Building	a	Web	Server	with	ExpressJS,	covers	core	concepts
about	the	HTTP	protocol,	the	“http”	NodeJS	module,	and	how	it	is	all
connected	with	ExpressJS.	It	explores	all	features	of	ExpressJS	for
building	Web	Server	applications	from	route	handlers	and	middleware
to	secure	a	Web	Server	application	and	debugging.

Chapter	3,	Building	a	RESTful	API,	explains	core	concepts	about	what	is
REST,	URLs,	and	CRUD	operations.	These	concepts	are	the	base	for
the	whole	chapter.	It	also	explores	how	to	make	CRUD	operations	in
ExpressJS	and	with	Mongoose	as	well	as	where	and	how	ExpressJS	and
Mongoose	fit	in	the	MVC	architectural	pattern.	It	covers	the	creation	of
Mongoose	schemas	and	models	as	well	as	different	types	of	Mongoose
middleware	and	validation	of	data.

Chapter	4,		Real-time	Communication	with	Socket.IO	and	ExpressJS,
gives	a	brief	introduction	to	NodeJS	events	and	how	bi-directional
communication	with	WebSockets	works.	It	also	goes	through	using
SocketIO	and	ExpressJS	to	build	Web	Applications	that	deliver	data	in
real	time.

Chapter	5,	Managing	State	with	Redux,	covers	what	Redux	is	and	the
three	core	principles.	It	also	covers	the	very	basic	idea	of	Redux	from
how	Array.prototype.reduce	works,	to	how	reducers	are	defined	and
how	to	write	middleware	functions	as	well	as	advanced	concepts	such
as	writing	store	enhancers,	time	traveling,	and	asynchronous	data	flow.

Chapter	6,	Building	Web	Applications	with	React,	explains	what	React	is,

13

what	JSX	syntax	is,	and	where	in	the	MVC	architectural	pattern	it	fits.
It	explores	all	core	concepts	of	React	in	the	form	of	easy-to-follow	and
build	recipes.	The	recipes	cover	topics	about	composition,	life	cycle
methods,	controlled	and	uncontrolled	components,	error	boundary
components,	and	others	such	as	type	checking	with	PropTypes	and
Portals.

14

Packt	is	searching	for
authors	like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.p
acktpub.com	and	apply	today.	We	have	worked	with	thousands	of
developers	and	tech	professionals,	just	like	you,	to	help	them	share	their
insight	with	the	global	tech	community.	You	can	make	a	general
application,	apply	for	a	specific	hot	topic	that	we	are	recruiting	an
author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

15

Table	of	Contents
Title	Page

Copyright	and	Credits

MERN	Quick	Start	Guide

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

What	this	book	covers

To	get	the	most	out	of	this	book

What	you	need	for	this	book

Download	the	example	code	files

Download	the	color	images

Code	in	Action

Conventions	used

Sections

16

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

See	also

Get	in	touch

Reviews

1.	 Introduction	to	the	MERN	Stack

Technical	requirements

Introduction

The	MVC	architectural	pattern

Installing	and	configuring	MongoDB

Getting	ready

How	to	do	it...

There's	more...

Installing	Node.js

Getting	ready

How	to	do	it...

Installing	npm	packages

Getting	ready

How	to	do	it...

How	it	works...

17

2.	 Building	a	Web	server	with	ExpressJS

Technical	requirements

Introduction

Routing	in	ExpressJS

Getting	ready

How	to	do	it...

Route	methods

Route	handlers

Chainable	route	methods

There's	more...

Modular	route	handlers

Getting	ready

How	to	do	it...

Writing	middleware	functions

Getting	ready

How	to	do	it...

How	it	works...

Writing	configurable	middleware	functions

Getting	ready

How	to	do	it...

Let's	test	it...

There's	more...

Writing	router-level	middleware	functions

18

Getting	ready

How	to	do	it...

There's	more...

How	it	works...

Writing	error-handler	middleware	functions

Getting	ready

How	to	do	it...

Using	ExpressJS'	built-in	middleware	function	for	serving	static	as

sets

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Parsing	the	HTTP	request	body

Getting	ready

How	to	do	it...

How	it	works...

Compressing	HTTP	responses

Getting	ready

How	to	do	it...

How	it	works...

Using	an	HTTP	request	logger

Getting	ready

19

How	to	do	it...

Managing	and	creating	virtual	domains

Getting	ready

How	to	do	it...

There's	more...

Securing	an	ExpressJS	web	application	with	Helmet

Getting	ready

How	to	do	it...

How	it	works...

Using	template	engines

Getting	ready

How	to	do	it...

Debugging	your	ExpressJS	web	application

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

3.	 Building	a	RESTful	API

Technical	requirements

Introduction

CRUD	operations	using	ExpressJS'	route	methods

Getting	ready

20

How	to	do	it...

Let's	test	it...

How	it	works...

CRUD	operations	with	Mongoose

Getting	ready

How	to	do	it...

See	also

Using	Mongoose	query	builders

Getting	ready

How	to	do	it...

See	also

Defining	document	instance	methods

Getting	ready

How	to	do	it...

There's	more...

See	also

Defining	static	model	methods

Getting	ready

How	to	do	it...

There's	more...

See	also

Writing	middleware	functions	for	Mongoose

Getting	ready

21

How	to	do	it...

Document	middleware	functions

Query	middleware	functions

Model	middleware	functions

There's	more...

See	also

Writing	custom	validators	for	Mongoose's	schemas

Getting	ready

How	to	do	it...

See	also

Building	a	RESTful	API	to	manage	users	with	ExpressJS	and	Mongoose

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

See	also

4.	 Real-Time	Communication	with	Socket.IO	and	ExpressJS

Technical	requirements

Introduction

Understanding	Node.js	events

Getting	ready

How	to	do	it...

How	it	works...

22

There's	more...

Understanding	Socket.IO	events

The	Socket.IO	server	events

Socket.IO	client	events

Getting	ready

How	to	do	it...

How	it	works...

Working	with	Socket.IO	namespaces

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

io.Manager

Defining	and	joining	Socket.IO	rooms

Getting	ready

How	to	do	it...

There's	more...

Writing	middleware	for	Socket.IO

Getting	ready

How	to	do	it...

Let's	test	it...

Integrating	Socket.IO	with	ExpressJS

23

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Using	ExpressJS	middleware	in	Socket.IO

Getting	ready

How	to	do	it...

How	it	works...

See	also

5.	 Managing	State	with	Redux

Technical	requirements

Introduction

Defining	actions	and	action	creators

Getting	ready

How	to	do	it...

How	it	works...

Defining	reducer	functions

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Creating	a	Redux	store

24

Getting	ready

How	to	do	it...

Let's	test	it...

There's	more

Binding	action	creators	to	the	dispatch	method

Getting	ready

How	to	do	it...

Let's	test	it...

Splitting	and	combining	reducers

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Writing	Redux	store	enhancers

Getting	ready

How	to	do	it...

How	it	works...

Time	traveling	with	Redux

Getting	ready

How	to	do	it...

Let's	test	it...

There's	more

Understanding	Redux	middleware

25

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Dealing	with	asynchronous	data	flow

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

6.	 Building	Web	Applications	with	React

Technical	requirements

Introduction

Understanding	React	elements	and	React	components

Getting	ready

How	to	do	it...

Let's	test	it...

Composing	components

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

Stateful	components	and	life	cycle	methods

26

Getting	ready

How	to	do	it...

Let's	test	it...

Working	with	React.PureComponent

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

React	event	handlers

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

There's	more...

Conditional	rendering	of	components

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Rendering	lists	with	React

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

27

Working	with	forms	and	inputs	in	React

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Understanding	refs	and	how	to	use	them

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Understanding	React	portals

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

Catching	errors	with	error	boundary	components

Getting	ready

How	to	do	it...

Let's	test	it...

Type	checking	properties	with	PropTypes

Getting	ready

How	to	do	it...

Let's	test	it...

How	it	works...

28

There's	more...

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

29

Preface
The	MERN	stack	can	be	seen	as	a	collection	of	tools	that	share	a
common	denominator	that	is	the	language,	JavaScript.	The	book
explores,	in	the	form	of	recipes,	how	to	build	web	client	and	server
applications	using	the	MERN	stack	following	the	MVC	architectural
pattern.

The	model	and	controller	of	the	MVC	architectural	pattern	are	covered
by	the	chapters	about	building	RESTful	APIs	with	ExpressJS	and
Mongoose.	The	chapters	cover	core	concepts	about	the	HTTP	protocol,
type	of	methods,	status	codes,	URLs,	REST,	and	CRUD	operations.
Afterward,	it	moves	to	topics	specific	to	ExpressJS,	such	as	request
handlers,	middleware,	and	security,	as	well	as	specific	topics	about
Mongoose,	such	as	schemas,	models,	and	custom	validation.

The	view	of	the	MVC	architectural	patterns	is	covered	by	the	chapter
about	ReactJS.	ReactJS	is	a	UI	library	that	is	component-based	with	a
declarative	API.	The	book's	aim	to	provide	the	essential	knowledge	for
building	ReactJS	web	applications	and	components.	Complementary	to
ReactJS,	the	book	contains	an	entire	chapter	about	Redux	that	explains
from	the	very	core	concepts	and	principles	to	advanced	features	such	as
store	enhancers,	time	travelling,	and	asynchronous	data	flow.

Additionally,	this	book	covers	real-time	communication	with	ExpressJS
and	SocketIO	to	deliver	and	exchange	data	in	real	time.

By	the	end	of	the	book,	you	will	know	the	core	concepts	and	essentials
for	building	full-stack	web	applications	with	the	MVC	architectural
pattern.

	

30

To	get	the	most	out	of
this	book
This	book	is	for	developers	who	are	interested	in	getting	started	with
the	MERN	stack	for	developing	web	applications.	In	order	to	be	able	to
understand	the	chapters,	you	should	have	already	a	general	knowledge
and	understanding	of	the	JavaScript	language.

31

What	you	need	for	this
book	
In	order	to	be	able	to	work	on	the	recipes,	you	need	the	following:

An	IDE	or	code	editor	of	your	preference.	Visual	Studio	Code
(vscode)	was	used	when	writing	the	recipes'	codes,	so	I	suggest
you	to	give	it	a	try

An	Operating	System	(O.S)	that	is	able	to	run	NodeJS	and
MongoDB,	preferably	one	of	the	following:

macOS	X	Yosemite/El	Capitan/Sierra

Linux

Windows	7/8/10	(.NET	framework	4.5	is	required	if
installing	VSCode	in	Windows	7)

Preferably,	at	least	1	GB	RAM	and	1.6	GHz	processor	or	faster

32

Download	the	example
code	files
You	can	download	the	example	code	files	for	this	book	from	your
account	at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	www.packtpub.com/support	and	register	to	have	the	files	emailed	directly
to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract
the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.co
m/PacktPublishing/MERN-Quick-Start-Guide.	In	case	there's	an	update	to	the	code,
it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/MERN-Quick-Start-Guide

33

videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

https://github.com/PacktPublishing/

34

Download	the	color
images
We	also	provide	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	You	can	download	it	here:	https:
//www.packtpub.com/sites/default/files/downloads/MERNQuickStartGuide_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MERNQuickStartGuide_ColorImages.pdf

35

Code	in	Action
Visit	the	following	link	to	check	out	videos	of	the	code	being	run:
https://goo.gl/ymdYBT

https://goo.gl/ymdYBT

36

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user
input,	and	Twitter	handles.	Here	is	an	example:	"Mount	the	downloaded
WebStorm-10*.dmg	disk	image	file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

	{	

								"dependencies":	{	

										"express":	"4.16.3",	

										"node-fetch":	"2.1.1",	

										"uuid":	"3.2.1"	

								}	

						}	

Any	command-line	input	or	output	is	written	as	follows:

npm	install

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see
onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear	in	the
text	like	this.	Here	is	an	example:	"Select	System	info	from	the
Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

37

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently
(Getting	ready,	How	to	do	it...,	Let's	test	it...,	How	it	works...,	There's
more...,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these
sections	as	follows:

38

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to
set	up	any	software	or	any	preliminary	settings	required	for	the	recipe.

39

How	to	do	it...
This	section	contains	the	steps	required	to	follow	the	recipe.

40

Let's	test	it...
This	section	consists	of	detailed	steps	on	how	to	test	the	code	given
in	How	to	do	it...	section.

41

How	it	works...
This	section	usually	consists	of	a	detailed	explanation	of	what
happened	in	the	previous	section.

42

There's	more...
This	section	consists	of	additional	information	about	the	recipe	in	order
to	make	you	more	knowledgeable	about	the	recipe.

43

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the
recipe.

44

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book
title	in	the	subject	of	your	message.	If	you	have	questions	about	any
aspect	of	this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of
our	content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this
book,	we	would	be	grateful	if	you	would	report	this	to	us.	Please	visit	ww
w.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form
on	the	internet,	we	would	be	grateful	if	you	would	provide	us	with	the
location	address	or	website	name.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that
you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

45

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not
leave	a	review	on	the	site	that	you	purchased	it	from?	Potential	readers
can	then	see	and	use	your	unbiased	opinion	to	make	purchase	decisions,
we	at	Packt	can	understand	what	you	think	about	our	products,	and	our
authors	can	see	your	feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

46

Introduction	to	the
MERN	Stack
In	this	chapter,	we	will	cover	the	following	topics:

The	MVC	architectural	pattern

Installing	and	configuring	MongoDB

Installing	Node.js

Installing	NPM	packages

47

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git
repository	of	this	book.	

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter01

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/1zwc6F

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter01
https://goo.gl/1zwc6F

48

Introduction
The	MERN	stack	is	a	solution	composed	of	four	main	components:

MongoDB:	A	database	that	uses	a	document-oriented	data
model.

ExpressJS:	A	web	application	framework	for	building	web
applications	and	APIs.

ReactJS:	A	declarative,	component-based,	and	isomorphic
JavaScript	library	for	building	user	interfaces.

Node.js:	A	cross-platform	JavaScript	runtime	environment
built	on	Chrome's	V8	JavaScript	engine	allows	developers	to
build	diverse	tools,	servers,	and	applications.

These	fundamental	components	that	comprise	the	MERN	stack	are
open	source,	and	are	thus	maintained	and	developed	by	a	great
community	of	developers.	What	ties	these	components	together	is	a
common	language,	JavaScript.

The	recipes	in	this	chapter	will	mainly	focus	on	setting	up	a
development	environment	to	work	with	a	MERN	stack.

You	are	free	to	use	the	code	editor	or	IDE	of	your	choice.	However,	I
would	suggest	you	give	Visual	Studio	Code	a	try	if	you	have	trouble
deciding	which	IDE	to	use.

49

The	MVC	architectural
pattern
Most	modern	web	applications	implement	the	MVC	architectural
pattern.	It	consists	of	three	interconnected	parts	that	separate	the
internal	representation	of	information	in	a	web	application:

Model:	Manages	the	business	logic	of	an	application	that
determines	how	data	should	be	stored,	created,	and	modified

View:	Any	visual	representation	of	the	data	or	information

Controller:	Interprets	user-generated	events	and	transforms
them	into	commands	for	the	model	and	view	to	update
accordingly:

50

The	Separation	of	Concern	(SoC)	design	pattern	separates	frontend
from	backend	code.	Following	the	MVC	architectural	pattern,
developers	are	able	to	adhere	to	the	SoC	design	pattern,	resulting	in	a
consistent	and	manageable	application	structure.

The	recipes	in	the	following	chapters	implement	this	architectural
pattern	to	separate	the	frontend	and	the	backend.

51

Installing	and
configuring	MongoDB
The	official	MongoDB	website	provides	up-to-date	packages
containing	binaries	for	installing	MongoDB	on	Linux,	OS	X,	and
Windows.

52

Getting	ready
Visit	the	official	website	of	MongoDB	at	https://www.mongodb.com/download-
center,	select	Community	Server,	and	then	select	your	preferred
operating	system	version	of	the	software	and	download	it.

Installing	MongoDB	and	configuring	it	may	require	additional	steps.

https://www.mongodb.com/download-center

53

How	to	do	it...
Visit	the	documentation	website	of	MongoDB	at
https://docs.mongodb.com/master/installation/	for	instructions	and	check	the
Tutorials	section	for	your	specific	platform.

After	installation,	an	instance	of	mongod-,	the	daemon	process	for	MongoDB-,
can	be	started	in	a	standalone	fashion:

1.	 Open	a	new	Terminal
2.	 Create	a	new	directory	named	data,	which	will	contain	the

Mongo	database
3.	 Type	mongod	--port	27017	--dbpath	/data/	to	start	a	new	instance

and	create	a	database
4.	 Open	another	Terminal
5.	 Type	mongo	--port	27017	to	connect	a	Mongo	shell	to	the	instance

https://docs.mongodb.com/master/installation/

54

There's	more...
As	an	alternative,	you	can	opt	to	use	a	Database	as	a	service	(DBaaS)
such	as	MongoDB	Atlas,	which,	at	the	time	of	writing,	allows	you	to
create	a	free	cluster	with	512	MB	of	storage.	Another	simple	alternative
is	mLab,	although	there	are	many	other	options.

55

Installing	Node.js
The	official	Node.js	website	provides	two	packages	containing	LTS	and
Current	(containing	the	latest	features)	binaries	to	install	Node.js	on
Linux,	OS	X,	and	Windows.

56

Getting	ready
For	the	purpose	of	this	book,	we	will	install	Node.js	v10.1.x.

57

How	to	do	it...
To	download	the	latest	version	of	Node.js:

1.	 Visit	the	official	website	at	https://nodejs.org/en/download/
2.	 Select	Current	|	Latest	Features
3.	 Select	the	binary	for	your	preferred	platform	or	operating

system	(OS)
4.	 Download	and	install

If	you	prefer	to	install	Node.js	via	package	manager,	visit
https://nodejs.org/en/download/package-manager/	and	select	your	preferred
platform	or	OS.

https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/

58

Installing	npm
packages
The	installation	of	Node.js	includes	a	package	manager	called	npm,
which	is	the	default	and	most	widely	used	package	manager	for
installing	JavaScript/Node.js	libraries.

NPM	packages	are	listed	in	the	NPM	registry	at	https://registry.npmjs.org/,
where	you	can	search	for	packages	and	even	publish	your	own.

There	are	other	alternatives	to	NPM	as	well,	such	as	Yarn,	which	is
compatible	with	the	public	NPM	registry.	You	are	free	to	use	the
package	manager	of	your	choice;	however,	for	the	purpose	of	this	book,
the	package	manager	used	in	the	recipes	will	be	NPM.

https://registry.npmjs.org/

59

Getting	ready
NPM	expects	to	find	a	package.json	file	at	the	root	of	your	project	folder.
This	is	a	configuration	file	that	describes	the	details	of	your	project,
such	as	its	dependencies,	the	name	of	the	project,	and	the	author	of	the
project.

Before	you're	able	to	install	any	packages	in	your	project,	you	must
create	a	package.json	file.	These	are	the	steps	you	will	usually	take	to
create	a	project:

1.	 Create	a	new	project	folder	in	your	preferred	location	and	either
name	it	mern-cookbook	or	give	it	another	name	of	your	choice.

2.	 Open	a	new	Terminal.
3.	 Change	the	current	directory	to	the	new	folder	you	just	created.

This	is	usually	done	with	the	cd	command	in	your	Terminal.
4.	 Run	npm	init	to	create	a	new	package.json	file,	following	the	steps

displayed	in	the	Terminal.

After	that,	you	should	have	a	package.json	file	that	will	look	something
like	the	following:

{	

				"name":	"mern-cookbook",	

				"version":	"1.0.0",	

				"description":	"mern	cookbook	recipes",	

				"main":	"index.js",	

				"scripts":	{	

								"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"	

				},	

				"author":	"Eddy	Wilson",	

				"license":	"MIT"	

}	

	

60

After	this,	you	will	be	able	to	use	NPM	to	install	new	packages	for	your
project.

61

How	to	do	it...
1.	 Open	a	new	Terminal
2.	 Change	the	current	directory	to	where	your	newly	created

project	folder	is	located
3.	 Run	the	following	line	to	install	the	chalk	package:

						npm	--save-exact	install	chalk

Now,	you	will	be	able	to	use	the	package	in	your	project	via	require	in
Node.js.	Go	through	the	following	steps	to	see	how	you	can	use	it:

1.	 Create	a	new	file	named	index.js	and	add	the	following	code:

						const	chalk	=	require('chalk')	

						const	{	red,	blue	}	=	chalk	

						console.log(red('hello'),	blue('world!'))	

2.	 Then,	open	a	new	Terminal	and	run	the	following:

						node	index.js		

62

How	it	works...
NPM	will	connect	to	and	look	in	the	NPM	registry	for	the	package
named	react,	and	will	download	it	and	install	it	if	it	exists.

The	following	are	some	useful	flags	that	you	can	use	NPM	with:

--save:	This	will	install	and	add	the	package	name	and	version
in	the	dependencies	section	of	your	package.json	file.	These
dependencies	are	modules	that	your	project	will	use	while	in
production.

--save-dev:	This	works	in	the	same	way	as	the	--save	flag.	It	will
install	and	add	the	package	name	in	the	devDependencies	section	of
the	package.json	file.	These	dependencies	are	modules	that	your
project	will	use	during	development.

--save-exact:	This	keeps	the	original	version	of	the	installed
package.	This	means,	if	you	share	your	project	with	other
people,	they	will	be	able	to	install	the	exact	same	version	of	the
package	that	you	use.

While	this	book	will	provide	you	with	a	step-by-step	guide	to	installing
the	necessary	packages	in	every	recipe,	you	are	encouraged	to	visit	the
NPM	documentation	website	at	https://docs.npmjs.com/getting-started/using-a-
package.json	to	learn	more.

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

63

Building	a	Web	server
with	ExpressJS
In	this	chapter,	we	will	cover	the	following	recipes:

Routing	in	ExpressJS

Modular	route	handlers

Writing	middleware	functions

Writing	configurable	middleware	functions

Writing	router-level	middleware	functions

Writing	error-handler	middleware	functions

Using	ExpressJS'	built-in	middleware	function	to	serve	static
assets

Parsing	the	HTTP	request	body

Compressing	HTTP	responses

Using	an	HTTP	request	logger

Managing	and	creating	virtual	domains

Securing	an	ExpressJS	web	application	with	helmet

Using	template	engines

Debugging	your	ExpressJS	web	application

64

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git
repository	of	this	book.	

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter02

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/xXhqWK

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter02
https://goo.gl/xXhqWK

65

Introduction
ExpressJS	is	the	preferred	de	facto	Node.js	web	application	framework
for	building	robust	web	applications	and	APIs.

In	this	chapter,	the	recipes	will	focus	on	building	a	fully	functional	web
server	and	understanding	the	core	fundamentals.

66

Routing	in	ExpressJS
Routing	refers	to	how	an	application	responds	or	acts	when	a	resource
is	requested	via	an	HTTP	verb	or	HTTP	method.

HTTP	stands	for	Hypertext	Transfer	Protocol	and	it's	the	basis	of
data	communication	for	the	World	Wide	Web	(WWW).	All
documents	and	data	in	the	WWW	are	identified	by	a	Uniform
Resource	Locator	(URL).

HTTP	verbs	or	HTTP	methods	are	a	client-server	model.	Typically,	a
web	browser	serves	as	a	client,	and	in	our	case	ExpressJS	is	the
framework	that	allows	us	to	create	a	server	capable	of	understanding
these	requests.	Every	request	expects	a	response	to	be	sent	to	the	client
to	recognize	the	status	of	the	resource	that	it	is	requesting.

Request	methods	can	be:

Safe:	An	HTTP	verb	that	performs	read-only	operations	on	the
server.	In	other	words,	it	does	not	alter	the	server	state.	For
example:	GET.

Idempotent:	An	HTTP	verb	that	has	the	same	effect	on	the
server	when	identical	requests	are	made.	For	instance,	sending
a	PUT	request	to	modify	a	user's	first	name	should	have	the	same
effect	on	the	server	if	implemented	correctly	when	multiple
identical	requests	are	sent.	All	safe	methods	are	also
idempotent.	For	example,	the	GET,	PUT,	and	DELETE	methods	are
idempotent.

Cacheable:	An	HTTP	response	that	can	be	cached.	Not	all
methods	or	HTTP	verbs	can	be	cached.	A	response	is	cacheable

67

only	if	the	status	code	of	the	response	and	the	method	used	to
make	the	request	are	both	cacheable.	For	example,	the	GET
method	is	cacheable	and	the	following	status	codes:	200
(Request	succeeded),	204	(No	content),	206	(Partial	content),	301
(Moved	permanently),	404	(Not	found),	405	(Method	not
allowed),	410	(Gone	or	Content	permanently	removed	from
server),	and	414	(URI	too	long).

68

Getting	ready
Understanding	routing	is	one	of	the	most	important	core	aspects	in
building	robust	RESTful	APIs.

In	this	recipe,	we	will	see	how	ExpressJS	handles	or	interprets	HTTP
requests.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

				npm	install

		

ExpressJS	does	the	whole	job	of	understanding	a	client's	request.	The
request	may	come	from	a	browser,	for	instance.	Once	the	request	has
been	interpreted,	ExpressJS	saves	all	the	information	in	two	objects:

Request:	This	contains	all	the	data	and	information	about	the
client's	request.	For	instance,	ExpressJS	parses	the	URI	and
makes	its	parameters	available	on	request.query.

Response:	This	contains	data	and	information	that	will	be	sent
to	the	client.	The	response's	headers	can	be	modified	as	well
before	sending	the	information	to	the	client.	The	response	object
has	several	methods	available	for	sending	the	status	code	and
data	to	the	client.	For	instance:	response.status(200).send('Some

69

Data!').

70

How	to	do	it...
Request	and	Response	objects	are	passed	as	arguments	to	the	route
handlers	defined	inside	a	route	method.

71

Route	methods
These	are	derived	from	HTTP	verbs	or	HTTP	methods.	A	route	method
is	used	to	define	the	response	that	an	application	will	have	for	a	specific
HTTP	verb.

ExpressJS	route	methods	have	equivalent	names	to	HTTP	verbs.	For
instance:	app.get()	for	the	GET	HTTP	verb	or	app.delete()	for	the	DELETE
HTTP	verb.

A	very	basic	route	can	be	written	as	the	following:

1.	 Create	a	new	file	named	1-basic-route.js
2.	 Include	the	ExpressJS	library	first	and	initialize	a	new

ExpressJS	application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Add	a	new	route	method	to	handle	requests	for	the	path	"/".	The
first	argument	specifies	the	path	or	URL,	the	next	argument	is
the	route	handler.	Inside	the	route	handler,	let's	use	the	response
object	to	send	a	status	code	200	(OK)	and	text	to	the	client:

						app.get('/',	(request,	response,	nextHandler)	=>	{	

										response.status(200).send('Hello	from	ExpressJS')	

						})	

4.	 Finally,	use	the	listen	method	to	accept	new	connections	on

72

port	1337:

						app.listen(

									1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

5.	 Save	the	file
6.	 Open	a	Terminal	and	run	the	following	command:

					node	1-basic-route.js	

7.	 Open	a	new	tab	on	your	browser	and	visit	localhost	on	port	1337
in	your	web	browser	to	see	the	results:

						http://localhost:1337/

For	more	information	about	which	HTTP	methods	are	supported	by	ExpressJS,	visit	the
official	ExpressJS	website	at	https://expressjs.com/en/guide/routing.html#route-methods.

https://expressjs.com/en/guide/routing.html#route-methods

73

Route	handlers
Route	handlers	are	callback	functions	that	accept	three	arguments.	The
first	one	is	the	request	object,	the	second	one	is	the	response	object,	and
the	last	one	is	a	callback,	which	passes	the	handler	to	the	next	request
handler	in	the	chain.	Multiple	callback	functions	can	be	used	inside	a
route	method	as	well.

Let's	see	a	working	example	of	how	we	could	write	route	handlers
inside	route	methods:

1.	 Create	a	new	file	named	2-route-handlers.js
2.	 Include	the	ExpressJS	library,	then	initialize	a	new	ExpressJS

application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Add	two	route	methods	to	handle	a	request	in	the	same	path
"/one".	Use	the	type	method	of	the	response	object	to	set	the
content	type	of	the	response	sent	to	the	client	to	text/plain.
Using	the	write	method	send	partial	data	to	the	client.	To
finalize	sending	data,	use	the	end	method	of	the	response	object.
Calling	nextHandler	will	pass	the	handler	to	the	second	handler	in
the	chain:

						app.get('/one',	(request,	response,	nextHandler)	=>	{	

										response.type('text/plain')	

										response.write('Hello	')	

										nextHandler()	

74

						})	

						app.get('/one',	(request,	response,	nextHandler)	=>	{	

									response.status(200).end('World!')	

						})	

4.	 Add	a	route	method	to	handle	a	request	in	the	path	"/two".	Two
route	handlers	are	defined	inside	the	route	method	to	handle	the
same	request:

						app.get('/two',	

										(request,	response,	nextHandler)	=>	{	

													response.type('text/plain')	

													response.write('Hello	')	

													nextHandler()	

									},	

										(request,	response,	nextHandler)	=>	{	

													response.status(200).end('Moon!')	

									}	

)	

5.	 Use	the	listen	method	to	accept	new	connections	on	port	1337:

						app.listen(

									1337,	

									()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	Terminal	and	run:

				node	2-route-handlers.js		

8.	 To	see	the	result,	open	a	new	tab	in	your	web	browser	and	visit:

75

						http://localhost:1337/one

						http://localhost:1337/two		

76

Chainable	route
methods
Route	methods	can	be	chainable	using	app.route(path)	because	the	path	is
specified	for	a	single	location.	This	is	probably	the	best	approach	when
dealing	with	multiple	route	methods	because,	besides	making	the	code
more	readable	and	less	prone	to	typos	and	redundancy,	it	allows	to
work	with	multiple	route	methods	at	the	same	time.

1.	 Create	a	new	file	named	3-chainable-routes.js
2.	 Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Chain	three	route	methods	using	the	route	method:

						app	

						.route('/home')	

						.get((request,	response,	nextHandler)	=>	{	

										response.type('text/html')	

										response.write('<!DOCTYPE	html>')	

										nextHandler()	

						})	

						.get((request,	response,	nextHandler)	=>	{	

										response.end(`	

										<html	lang="en">	

														<head>	

														<meta	charset="utf-8">	

														<title>WebApp	powered	by	ExpressJS</title>	

														</head>	

														<body	role="application">	

																		<form	method="post"	action="/home">	

77

																						<input	type="text"	/>	

																						<button	type="submit">Send</button>	

																		</form>	

														</body>	

										</html>	

										`)	

						})	

						.post((request,	response,	nextHandler)	=>	{	

										response.send('Got	it!')	

						})	

4.	 Use	the	listen	method	to	accept	new	connections	on	port	1337:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

5.	 Save	the	file
6.	 Open	a	terminal	and	run:

						node	3-chainable-routes.js

7.	 To	see	the	result,	open	a	new	tab	in	your	web	browser	and	visit:

						http://localhost:1337/home

78

There's	more...
Route	paths	can	be	strings	or	regular	expressions.	Route	paths	are
internally	turned	into	regular	expressions	using	the	path-to-regexp	NPM
package	https://www.npmjs.com/package/path-to-regexp.

path-to-regexp,	in	a	way,	helps	you	write	path	regular	expressions	in	a
more	human-readable	way.	For	example,	consider	the	following	code:

app.get(/([a-z]+)-([0-9]+)$/,	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Output:	{"0":"abc","1":"12345"}	for	path	/abc-12345	

This	could	be	written	as	follows:

app.get('/:0-:1',	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Outputs:	{"0":"abc","1":"12345"}	for	/abc-12345	

Or	better:

app.get('/:id-:tag',	(request,	response,	nextHandler)	=>	{	

				response.send(request.params)	

})	

//	Outputs:	{"id":"abc","tag":"12345"}	for	/abc-12345	

Take	a	look	at	this	expression:	/([a-z]+)-([0-9]+)$/.	The	parentheses	in
the	regular	expression	are	called	capturing	parentheses;	and	when
they	find	a	match,	they	remember	it.	In	the	preceding	example,	for	abc-
12345,	two	strings	are	remembered,	{"0":"abc","1":"12345"}.	This	is	the	way
that	ExpressJS	finds	a	match,	remembers	its	value,	and	associates	it	to	a
key:

https://www.npmjs.com/package/path-to-regexp

79

app.get('/:userId/:action-:where',	(request,	response,	nextHandler)	

=>	{	

				response.send(request.params)	

})	

//	Route	path:	/123/edit-profile	

//	Outputs:	{"userId":"123","action":"edit","where":"profile"}	

80

Modular	route	handlers
ExpressJS	has	a	built-in	class	called	router.	A	router	is	just	a	class	that
allows	developers	to	write	mountable	and	modular	route	handlers.

A	Router	is	an	instance	of	ExpressJS'	core	routing	system.	That	means,
all	routing	methods	from	an	ExpressJS	application	are	available:

const	router	=	express.Router()	

router.get('/',	(request,	response,	next)	=>	{	

		response.send('Hello	there!')	

})	

router.post('/',	(request,	response,	next)	=>	{	

		response.send('I	got	your	data!')	

})	

81

Getting	ready
In	this	recipe,	we	will	see	how	to	use	a	router	to	make	a	modular
application.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

		

82

How	to	do	it...
Suppose	that	you	want	to	write	a	modular	mini-application	within	your
ExpressJS	main	application	that	can	be	mounted	to	any	URI.	You	want
to	be	able	to	choose	the	path	where	to	mount	it,	or	you	just	want	to
mount	the	same	route	methods	and	handlers	to	several	others	paths	or	a
URI.

1.	 Create	a	new	file	named	modular-router.js
2.	 Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Define	a	router	for	your	mini-application	and	add	a	request
method	to	handle	requests	for	path	"/home":

						const	miniapp	=	express.Router()	

						miniapp.get('/home',	(request,	response,	next)	=>	{	

										const	url	=	request.originalUrl	

										response	

														.status(200)	

														.send(`You	are	visiting	/home	from	${url}`)	

						})	

4.	 Mount	your	modular	mini-application	to	"/first"	path,	and	to
"/second"	path:

						app.use('/first',	miniapp)	

						app.use('/second',	miniapp)	

83

5.	 Listen	for	new	connections	on	port	1337:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	Terminal	and	run	the	following	command:

						node	modular-router.js

8.	 To	see	the	results,	navigate	in	your	web	browser	to:

						http://localhost:1337/first/home

						http://localhost:1337/second/home

You	will	see	two	different	outputs:

You	are	visting	/home	from	/first/home	

You	are	visting	/home	from	/second/home	

As	can	be	seen,	a	router	was	mounted	to	two	different	mount	points.
Routers	are	usually	referred	to	as	mini-applications	because	they	can	be
mounted	to	an	ExpressJS	application's	specific	routes	and	not	only	once
but	also	several	times	to	different	mount	points,	paths,	or	URIs.

84

Writing	middleware
functions
Middleware	functions	are	mainly	used	to	make	changes	in	the	request
and	response	object.	They	are	executed	in	sequence,	one	after	another,
but	if	a	middleware	functions	does	not	pass	control	to	the	next	one,	the
request	is	left	hanging.

85

Getting	ready
Middleware	functions	have	the	following	signature:

app.use((request,	response,	next)	=>	{	

				next()	

})	

The	signature	is	very	similar	to	writing	route	handlers.	In	fact,	a
middleware	function	can	be	written	for	a	specific	HTTP	method	and	a
specific	path	route,	and	will	look	like	this,	for	example:

app.get('/',	(request,	response,	next)	=>	{	

				next()	

})	

So,	if	you	are	wondering	what	the	difference	is	between	route	handlers,
and	middleware	functions,	the	answer	is	simple:	their	purpose.

If	you	are	writing	route	handlers,	and	the	request	objects	and/or	the
response	object	is	modified,	then	you	are	writing	middleware	functions.

In	this	recipe,	you	will	see	how	to	use	a	middleware	function	to	restrict
access	to	certain	paths	or	routes	that	depend	on	a	certain	condition.
Before	you	start,	create	a	new	package.json	file	with	the	following
content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

86

				npm	install	

87

How	to	do	it...
We	will	write	a	middleware	function	that	allows	access	to	the	root	path
"/"	only	when	the	query	parameter	allowme	is	present:

1.	 Create	a	new	file	named	middleware-functions.js
2.	 Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Write	a	middleware	function	that	will	add	a	property	allowed	to
the	request	object:

						app.use((request,	response,	next)	=>	{	

										request.allowed	=	Reflect.has(request.query,	'allowme')	

										next()	

						})	

4.	 Add	a	request	method	to	handle	requests	for	path	"/":

						app.get('/',	(request,	response,	next)	=>	{	

										if	(request.allowed)	{	

														response.send('Hello	secret	world!')	

										}	else	{	

														response.send('You	are	not	allowed	to	enter')	

										}	

						})	

88

5.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

						node	middleware-functions.js

		

8.	 To	see	the	results,	in	your	web	browser,	navigate	to:

						http://localhost:1337/

						http://localhost:1337/?allowme

89

How	it	works...
Just	like	with	route	handlers,	middleware	functions	need	to	pass	control
to	the	next	handler;	otherwise,	our	application	will	have	been	hanging
because	no	data	was	sent	to	the	client,	and	the	connection	was	not
closed	either.

If	new	properties	are	added	to	the	request	or	response	objects	inside	a
middleware	function,	the	next	handler	will	have	access	to	those	new
properties.	As	in	our	previously	written	code,	the	allowed	property	in	the
request	object	is	available	to	the	next	handler.

90

Writing	configurable
middleware	functions
A	common	pattern	for	writing	middleware	functions	is	to	wrap	the
middleware	function	inside	another	function.	The	result	of	doing	so	is	a
configurable	middleware	function.	They	are	also	higher-order
functions,	that	is,	a	function	that	returns	another	function.

const	fn	=	(options)	=>	(response,	request,	next)	=>	{		

				next()		

}	

Usually	an	object	is	used	as	an	options	parameters.	However,	there	is
nothing	stopping	you	from	doing	it	in	your	own	way.

91

Getting	ready
In	this	recipe,	you	will	write	a	configurable	logger	middleware
function.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

		

92

How	to	do	it...
What	your	configurable	middleware	function	will	do	is	simple:	it	will
print	the	status	code	and	the	URL	when	a	request	is	made.

1.	 Create	a	new	file	named	middleware-logger.js

2.	 Export	a	function	that	accepts	an	object	as	the	first	argument.
The	function	expects	the	object	to	have	a	property	enable,	which
can	be	either	true	or	false:

						const	logger	=	(options)	=>	(request,	response,	next)	=>	{	

										if	(typeof	options	===	'object'	

														&&	options	!==	null	

														&&	options.enable)	{	

														console.log(

																		'Status	Code:',	response.statusCode,	

																		'URL:',	request.originalUrl,	

)	

										}	

										next()	

						}	

						module.exports	=	logger	

3.	 Save	the	file

93

Let's	test	it...
Our	configurable	middleware	function	is	not	useful	on	its	own.	Create	a
simple	ExpressJS	application	to	see	our	middleware	actually	working:

1.	 Create	a	new	file	named	configurable-middleware-test.js
2.	 Include	our	middleware-logger.js	module	and	initialize	a	new

ExpressJS	application:

							const	express	=	require('express')	

							const	loggerMiddleware	=	require('./middleware-logger')	

							const	app	=	express()	

3.	 Use	the	use	method	to	include	our	configurable	middleware
function.	When	the	enable	property	is	set	to	true,	your	logger
will	work	and	log	every	request's	status	code	and	URL	to	the
terminal:

						app.use(loggerMiddleware({	

									enable:	true,	

						}))	

4.	 Listen	on	port	1337	for	new	connections:

						app.listen(

											1337,	

											()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

94

5.	 Save	the	file
6.	 Open	a	terminal	and	run:

						node	middleware-logger-test.js

7.	 In	your	browser,	navigate	to:

						http://localhost:1337/hello?world

8.	 The	Terminal	should	display:

						Status	Code:	200	URL:	/hello?world

95

There's	more...
If	you	want	to	experiment,	start	your	configurable	middleware	test
application	with	the	enable	property	set	to	false.	No	logs	should	be
displayed.

Usually,	you	would	want	to	disable	logging	in	production,	since	this
operation	could	hit	performance.

An	alternative	to	disabling	all	logging	is	to	use	other	libraries	to	do	this
task	instead	of	using	console.	There	are	libraries	that	allow	you	to	set
different	levels	of	logging	as	well,	for	instance:

Debug	module:	https://www.npmjs.com/package/debug

Winston:	https://www.npmjs.com/package/winston

Logging	is	useful	for	several	reasons.	The	main	reasons	are:

It	checks	whether	your	services	are	running	properly,	for
example,	checking	whether	your	application	is	connected	to
MongoDB.

It	discovers	errors	and	bugs.

It	helps	you	to	understand	better	how	your	application	is
working.	For	instance,	if	you	have	a	modular	application,	you
can	see	how	it	integrates	when	included	in	other	applications.

https://www.npmjs.com/package/debug
https://www.npmjs.com/package/winston

96

Writing	router-level
middleware	functions
Router-level	middleware	functions	are	only	executed	inside	a	router.
They	are	usually	used	when	applying	a	middleware	to	a	mount	point
only	or	to	a	specific	path.

97

Getting	ready
In	this	recipe,	you	will	create	a	small	logger	router-level	middleware
function	that	will	only	log	requests	to	paths	mounted	or	located	in	the
router's	mounted	path.	Before	you	start,	create	a	new	package.json	file
with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

98

How	to	do	it...
1.	 Create	a	new	file	named	router-level.js
2.	 Initialize	a	new	ExpressJS	application	and	define	a	router:

						const	express	=	require('express')	

						const	app	=	express()	

						const	router	=	express.Router()	

3.	 Define	our	logger	middleware	function:

						router.use((request,	response,	next)	=>	{	

										console.log('URL:',	request.originalUrl)	

										next()	

						})	

4.	 Mount	the	Router	to	the	path	"/router"

						app.use('/router',	router)	

5.	 Listen	on	port	1337	for	new	connections:

					app.listen(

									1337,	

							()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

99

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

						node	router-level.js

8.	 In	your	web	browser	navigate	to:

						http://localhost:1337/router/example

9.	 The	Terminal	should	display:

						URL:	/router/example

10.	 After,	in	your	web	browser,	navigate	to:

						http://localhost:1337/example

11.	 No	logs	should	be	displayed	in	terminal

100

There's	more...
It	is	possible	to	pass	control	back	to	the	next	middleware	function	or
route	method	outside	of	a	router	by	calling	next('router').

router.use((request,	response,	next)	=>	{	

		next('route')	

})	

For	example,	by	creating	a	router	that	expects	to	receive	a	user	ID	as	a
query	parameter.	The	next('router')	function	can	be	used	to	get	out	of
the	router	or	pass	control	to	the	next	middleware	function	outside	of	the
router	when	a	user	ID	is	not	provided.	The	next	middleware	function
out	of	the	router	can	be	used	to	display	other	information	when	the
router	passes	control	to	it.	For	example:

1.	 Create	a	new	file	named	router-level-control.js
2.	 Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Define	a	new	router:

						const	router	=	express.Router()	

4.	 Define	our	logger	middleware	function	inside	the	router:

						router.use((request,	response,	next)	=>	{	

101

									if	(!request.query.id)	{	

													next('router')	//	Next,	out	of	Router	

										}	else	{	

												next()	//	Next,	in	Router	

										}	

						})	

5.	 Add	a	route	method	to	handle	GET	requests	for	path	"/"	which
will	be	executed	only	if	the	middleware	function	passes	control
to	it:

							router.get('/',	(request,	response,	next)	=>	{	

									const	id	=	request.query.id	

									response.send(`You	specified	a	user	ID	=>	${id}`)	

						})	

6.	 Add	a	route	method	to	handle	GET	requests	for	path	"/"	outside
of	the	router.	However,	include	the	router	as	a	route	handler	as
the	second	argument,	and	another	route	handler	to	handle	the
same	request	only	if	the	router	passes	control	to	it:

						app.get('/',	router,	(request,	response,	next)	=>	{	

										response	

												.status(400)	

												.send('A	user	ID	needs	to	be	specified')	

				})	

7.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

8.	 Save	the	file

102

9.	 Open	a	terminal	and	run:

						node	router-level-control.js

10.	 To	see	the	result,	in	your	browser,	navigate	to:

						http://localhost:1337/

						http://localhost:1337/?id=7331

103

How	it	works...
When	navigating	to	the	first	URL	(http://localhost:1337/),	the	following
message	is	shown:

	A	user	ID	needs	to	be	specified	

This	is	because	the	middleware	function	in	the	router	checks	if	the	id
was	provided	in	the	query,	and	because	it	is	not,	it	passes	control	to	the
next	handler	outside	of	the	router	with	next('router').

On	the	other	hand,	when	navigating	to	the	second	URL
(http://localhost:1337/?id=7331),	the	following	message	is	shown:

You	specified	a	user	ID	=>	7331	

That	happens	because,	as	an	id	was	provided	in	the	query,	the
middleware	function	in	the	router	will	pass	control	to	the	next	handler
inside	the	router	with	next().

http://localhost:1337/?id=7331

104

Writing	error-handler
middleware	functions
ExpressJS	already	includes	by	default	a	built-in	error	handler	which
gets	executed	at	the	end	of	all	middleware	and	route	handlers.

There	are	ways	that	the	built-in	error	handler	can	be	triggered.	One	is
implicit	when	an	error	occurs	inside	a	route	handler.	For	example:

app.get('/',	(request,	response,	next)	=>	{	

				throw	new	Error('Oh	no!,	something	went	wrong!')	

})	

And	another	way	of	triggering	the	built-in	error	handler	is	explicit	when
passing	an	error	as	an	argument	to	next(error).	For	instance:

app.get('/',	(request,	response,	next)	=>	{	

				try	{	

								throw	new	Error('Oh	no!,	something	went	wrong!')	

				}	catch	(error)	{	

								next(error)	

				}	

})	

The	stack	trace	is	displayed	on	the	client	side.	If	NODE_ENV	is	set	to	production,	then	the
stack	trace	is	not	included.

A	custom	error	handler	middleware	function	can	be	written	as	well	and
it	looks	pretty	much	the	same	as	route	handlers	do	with	the	exception
that	an	error	handler	function	middleware	expects	to	receive	four
arguments:

app.use((error,	request,	response,	next)	=>	{	

				next(error)	

})	

105

Take	into	account	that	next(error)is	optional.	That	means,	if	specified,
next(error)	will	pass	control	over	to	the	next	error	handler.	If	no	other
error	handler	was	defined,	then	the	control	will	pass	to	the	built-in	error
handler.

106

Getting	ready
In	this	recipe,	we	will	see	how	to	create	a	custom	error	handler.	Before
you	start,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

107

How	to	do	it...
You	will	build	a	custom	error	handler	that	sends	to	the	client	the	error
message.

1.	 Create	a	new	file	named	custom-error-handler.js
2.	 Include	the	ExpressJS	library,	then	initialize	a	new	ExpressJS

application:

					const	express	=	require('express')	

					const	app	=	express()	

3.	 Define	a	new	Route	Method	to	handle	GET	requests	for	path	"/"
and	throw	an	error	every	time:

						app.get('/',	(request,	response,	next)	=>	{	

										try	{	

													throw	new	Error('Oh	no!,	something	went	wrong!')	

										}	catch	(err)	{	

													next(err)	

											}	

						})	

4.	 Define	a	custom	error	handler	middleware	function	to	send	the
error	message	back	to	the	client's	browser:

						app.use((error,	request,	response,	next)	=>	{	

										response.end(error.message)	

						})	

108

5.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

						node	custom-error-handler.js

8.	 To	see	the	result,	in	your	web	browser,	navigate	to:

						http://localhost:1337/

109

Using	ExpressJS'	built-
in	middleware	function
for	serving	static	assets
Prior	to	the	4.x	version	of	ExpressJS,	it	has	depended	on	ConnectJS
which	is	an	HTTP	server	framework	https://github.com/senchalabs/connect.	In
fact,	most	middleware	written	for	ConnectJS	is	also	supported	in
ExpressJS.

As	from	the	4.x	version	of	ExpressJS,	it	no	longer	depends	on
ConnectJS,	and	all	previously	built-in	middleware	functions	were
moved	to	separate	modules	https://expressjs.com/en/resources/middleware.html.

ExpressJS	4.x	and	newer	versions	include	only	two	built-in	middleware
functions.	The	first	one	has	already	been	seen:	the	built-in	error	handler
middleware	function.	The	second	one	is	the	express.static	middleware
function	that	is	responsible	for	serving	static	assets.

The	express.static	middleware	function	is	based	on	serve-static	module
https://expressjs.com/en/resources/middleware/serve-static.html.

The	main	difference	between	express.static	and	serve-static	is	that	the
second	one	can	be	used	outside	of	ExpressJS.

https://github.com/senchalabs/connect
https://expressjs.com/en/resources/middleware.html
https://expressjs.com/en/resources/middleware/serve-static.html

110

Getting	ready
In	this	recipe,	you	will	see	how	to	build	a	web	application	that	will
serve	static	assets	in	a	certain	path.	Before	you	start,	create	a	new
package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

111

How	to	do	it...
1.	 Create	a	new	directory	named	public
2.	 Move	into	the	new	public	directory
3.	 Create	a	new	file	named	index.html
4.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="utf-8">	

										<title>Simple	Web	Application</title>	

						</head>	

						<body>	

										<section	role="application">	

								<h1>Welcome	Home!</h1>	

										</section>	

						</body>	

						</html>	

5.	 Save	the	file
6.	 Navigate	back	out	of	the	public	directory
7.	 Create	a	new	file	named	serve-static-assets.js

8.	 Add	the	following	code.	Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	path	=	require('path')	

						const	app	=	express()	

112

9.	 Include	the	express.static	configurable	middleware	function	and
Pass	the	path	of	the	/public	directory	where	index.html	file	is
located:

						const	publicDir	=	path.join(__dirname,	'./public')	

						app.use('/',	express.static(publicDir))	

10.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

11.	 Save	the	file
12.	 Open	a	terminal	and	run:

						node	serve-static-assets.js

13.	 To	see	the	result,	in	your	browser,	navigate	to:

						http://localhost:1337/index.html

113

How	it	works...
Our	index.html	file	will	be	shown	because	we	specified	"/"	as	the	root
directory	where	to	look	for	assets.

Try	changing	the	path	from	"/"	to	"/public".	Then,	you	will	be	able	to	see
that	the	index.html	file,	and	other	files	that	you	want	to	include	in	the
/public	directory,	will	be	accessible	under
http://localhost:1337/public/[fileName].

114

There's	more...
Let's	pretend	that	you	have	a	big	project	that	serves	dozens	of	static
files,	including	images,	font	files,	and	PDF	documents	(those	about
privacy	and	legal	stuff)	among	others.	You	decided	that	you	want	to
keep	them	in	separate	files,	but	you	do	not	want	to	change	the	mount
path	or	URI.	They	can	be	served	under	/public,	for	example,	but	they
will	exist	in	separate	directories	in	your	project	directory:

First,	let's	create	the	first	public	directory	that	will	contain	a	single	file
named	index.html:

1.	 Create	a	new	directory	named	public	if	you	didn't	create	it	in	the
previous	recipe

2.	 Move	into	the	new	public	directory
3.	 Create	a	new	file	named	index.html
4.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="utf-8">	

										<title>Simple	Web	Application</title>	

						</head>	

						<body>	

											<section	role="application">	

											<h1>Welcome	Home!</h1>	

											</section>	

						</body>	

						</html>	

5.	 Save	the	file

115

Now,	let's	create	a	second	public	directory	that	will	contain	another	file
named	second.html:

6.	 Move	back	out	of	the	public	directory
7.	 Create	a	new	directory	named	another-public
8.	 Move	into	the	new	another-public	directory
9.	 Create	a	new	empty	file	named	second.html

10.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="utf-8">	

										<title>Simple	Web	Application</title>	

						</head>	

					<body>	

										<section	role="application">	

											Welcome	to	Second	Page!	

										</section>	

					</body>	

						</html>	

11.	 Save	the	file

As	you	can	see,	both	files	exist	in	different	directories.	To	serve	those
files	under	one	mount	point:

1.	 Move	back	out	of	the	another-public	directory
2.	 Create	a	new	file	named	router-serve-static.js
3.	 Include	the	ExpressJS	and	path	libraries.	Then,	initialize	a	new

ExpressJS	application:

						const	express	=	require('express')	

						const	path	=	require('path')	

116

						const	app	=	express()	

4.	 Define	a	router:

						const	staticRouter	=	express.Router()	

5.	 Use	the	express.static	configurable	middleware	function	to
include	both	directories,	public	and	another-public:

						const	assets	=	{	

											first:	path.join(__dirname,	'./public'),	

										second:	path.join(__dirname,	'./another-public')	

						}	

							staticRouter	

										.use(express.static(assets.first))	

										.use(express.static(assets.second))	

6.	 Mount	the	Router	to	the	"/"	path:

							app.use('/',	staticRouter)	

7.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

											()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

8.	 Save	the	file
9.	 Open	a	terminal	and	run:

117

						node	router-serve-static.js

10.	 To	see	the	result,	in	the	browser,	navigate	to:

						http://localhost:1337/index.html

						http://localhost:1337/second.html

11.	 Two	different	files	in	different	locations	were	served	under	one
path

If	two	or	more	files	with	the	same	name	exist	under	different	directories,	only	the	first	one
found	will	be	displayed	on	the	client-side.

118

Parsing	the	HTTP
request	body
body-parser	is	a	middleware	function	that	parses	the	incoming	request
body	and	makes	it	available	in	the	request	object	as
request.body	https://expressjs.com/en/resources/middleware/body-parser.html.

This	module	allows	an	application	to	parse	the	incoming	request	as:

JSON

Text

Raw	(buffer	original	incoming	data)

URL	encoded	form

The	module	supports	automatic	decompression	of	gzip	and	deflates
encodings	when	the	incoming	request	is	compressed.

https://expressjs.com/en/resources/middleware/body-parser.html

119

Getting	ready
In	this	recipe,	you	will	see	how	to	use	the	body-parser	NPM	module	to
parse	the	content	body	sent	from	two	different	forms	encoded	in	two
different	ways.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"body-parser":	"1.18.2",	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

120

How	to	do	it...
Two	forms	will	be	displayed	to	the	user,	both	of	them	will	send	data	to
our	web	server	application	encoded	in	two	different	ways.	The	first	one
is	a	URL	encoded	form	while	the	other	one	will	encode	its	body	as
plain	text.

1.	 Create	a	file	named	parse-form.js
2.	 Include	the	body-parser	NPM	module.	Then,	initialize	a	new

ExpressJS	application:

						const	express	=	require('express')	

						const	bodyParser	=	require('body-parser')	

						const	app	=	express()	

3.	 Include	the	body-parser	middleware	functions	to	handle	URL
encoded	requests	and	text	plain	requests:

							app.use(bodyParser.urlencoded({	extended:	true	}))	

							app.use(bodyParser.text())	

4.	 Add	a	new	route	method	to	handle	GET	requests	for	path	"/".
Serve	HTML	content	with	two	forms	that	submit	data	using
different	encodings:

						app.get('/',	(request,	response,	next)	=>	{	

												response.send(`	

												<!DOCTYPE	html>	

												<html	lang="en">	

121

												<head>	

														<meta	charset="utf-8">	

														<title>WebApp	powered	by	ExpressJS</title>	

											</head>	

									<body>	

												<div	role="application">	

																<form	method="post"	action="/setdata">	

																				<input	name="urlencoded"	type="text"	/>	

																				<button	type="submit">Send</button>	

																</form>	

															<form	method="post"	action="/setdata"	

																	enctype="text/plain">	

																		<input	name="txtencoded"	type="text"	/>	

																		<button	type="submit">Send</button>	

															</form>	

											</div>	

								</body>	

								</html>	

							`)	

					})	

5.	 Add	a	new	route	method	to	handle	POST	requests	for	path
"/setdata".	Display	on	terminal	the	content	of	request.body:

						app.post('/setdata',	(request,	response,	next)	=>	{	

										console.log(request.body)	

										response.end()	

						})	

6.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

7.	 Save	the	file
8.	 Open	a	terminal	and	run:

122

						node	parse-form.js

9.	 In	your	web	browser,	navigate	to:

						http://localhost:1337/

10.	 Fill	the	first	input	box	with	any	data	and	submit	the	form:
11.	 In	your	web	browser,	navigate	back	to:

						http://localhost:1337/

12.	 Fill	the	second	input	box	with	any	data	and	submit	the	form:
13.	 Check	the	output	in	the	terminal

123

How	it	works...
Terminal	outputs	something	like:

{	'urlencoded':	'Example'	}	

txtencoded=Example	

Two	parsers	are	used	above:

1.	 The	first	one	bodyParser.urlencoded()	parses	incoming	requests	for
multipart/form-data	encoding	type.	The	result	is	available	as	an
Object	in	request.body

2.	 The	second	one	bodyParser.text()	parses	incoming	requests	for
text/plain	encoding	type.	The	result	is	available	as	a	String	in
request.body

124

Compressing	HTTP
responses
compression	is	a	middleware	function	that	compresses	the	response
body	that	will	be	send	to	the	client.	This	module	uses	the	zlib	module
https://nodejs.org/api/zlib.html	that	supports	the	following	content-encoding
mechanisms:

gzip

deflate

The	Accept-Encoding	HTTP	header	is	used	to	determine	which	content-
encoding	mechanism	is	supported	on	the	client-side	(for	example	web
browser)	while	the	Content-Encoding	HTTP	header	is	used	to	tell	the	client
which	content	encoding	mechanism	was	applied	to	the	response	body.

compression	is	a	configurable	middleware	function.	It	accepts	an	options
object	as	the	first	argument	to	define	a	specific	behavior	for	the
middleware	and	also	to	pass	zlib	options	as	well.

https://nodejs.org/api/zlib.html

125

Getting	ready
In	this	recipe,	we	will	see	how	to	configure	and	use	the	compression	NPM
module	to	compress	the	request	body	sent	to	the	client.	Before	you
start,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"compression":	"1.7.2",	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

126

How	to	do	it...
1.	 Create	a	new	file	named	compress-site.js
2.	 Include	the	compression	NPM	module.	Then,	initialize	a	new

ExpressJS	application:

						const	express	=	require('express')	

						const	compression	=	require('compression')	

						const	app	=	express()	

3.	 Include	the	compression	middleware	function.	Specify	the	level	of
compression	to	9	(best	compression)	and	threshold,	or	minimum
size	in	bytes	that	the	response	should	have	to	consider
compressing	the	response	body,	to	0	bytes:

						app.use(compression({	level:	9,	threshold:	0	}))	

4.	 Define	a	route	method	to	handle	GET	requests	for	path	"/"	which
will	serve	a	sample	HTML	content	that	we	expect	to	be
compressed	and	will	print	the	encodings	that	the	client	accepts:

						app.get('/',	(request,	response,	next)	=>	{	

										response.send(`	

										<!DOCTYPE	html>	

										<html	lang="en">	

										<head>	

														<meta	charset="utf-8">	

														<title>WebApp	powered	by	ExpressJS</title>	

										</head>	

127

										<body>	

														<section	role="application">	

																		<h1>Hello!	this	page	is	compressed!</h1>	

														</section>	

										</body>	

									</html>	

										`)	

										console.log(request.acceptsEncodings())	

					})	

5.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

						node	compress-site.js	

8.	 In	your	browser,	navigate	to:

						http://localhost:1337/

128

How	it	works...
The	output	of	the	Terminal	will	show	the	content	encoding	mechanism
that	the	client	(for	example	web	browser)	supports.	It	may	look
something	like	this:

						['gzip',	'deflate',	'sdch',	'br',	'identity']

		

The	content	encoding	mechanism	sent	by	the	client	is	used	by
compression	internally	to	know	if	compression	is	supported.	If
compression	is	not	supported,	then	the	response	body	is	not
compressed.

If	opening	Chrome	Dev	Tools	or	similar	and	analyzing	the	request
made,	the	Content-Encoding	header	that	was	sent	by	the	server	indicates
the	kind	of	content	encoding	mechanism	used	by	compression.

Chrome	Dev	Tools	|	Network	Tab	displaying	Response	Headers

The	compression	library	sets	the	Content-Encoding	header	to	the	encoding
mechanism	used	for	compressing	the	response	body.

The	threshold	option	is	set	by	default	to	1	KB	which	means	that	if	the	response	size	is
below	the	number	of	bytes	specified,	then	it	is	not	compressed.	Set	it	to	0	or	false	to
compress	the	response	even	when	the	size	is	below	1	KB

129

Using	an	HTTP	request
logger
As	previously	seen,	writing	a	request	logger	is	simple.	However,
writing	our	own	could	take	precious	time.	Luckily,	there	are	several
other	alternatives	out	there.	For	example,	a	very	popular	HTTP	request
logger	widely	used	is
morgan	https://expressjs.com/en/resources/middleware/morgan.html.

morgan	is	a	configurable	middleware	function	that	takes	two
arguments	format	and	options	which	are	used	to	specify	the	format	in
which	the	logs	are	displayed	and	what	kind	of	information	needs	to	be
displayed.

There	are	several	predefined	formats:

tiny:	Minimal	output

short:	Same	as	tiny,	including	remote	IP	address

common:	Standard	Apache	log	output

combined:	Standard	Apache	combined	log	output

dev:	Displays	the	same	information	as	the	tiny	format	does.
However,	the	response	statuses	are	colored.

https://expressjs.com/en/resources/middleware/morgan.html

130

Getting	ready
Create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"morgan":	"1.9.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

131

How	to	do	it...
Let's	build	a	working	example.	We	will	include	the	morgan
configurable	middleware	function	with	the	dev	format	to	display
information	of	every	request.

1.	 Create	a	new	file	named	morgan-logger.js
2.	 Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	morgan	=	require('morgan')	

						const	app	=	express()	

3.	 Include	the	morgan	configurable	middleware.	Pass	'dev'	as	the
format	we	will	use	as	the	first	argument	to	the	middleware
function:

						app.use(morgan('dev'))	

4.	 Define	a	route	method	to	handle	all	GET	requests:

						app.get('*',	(request,	response,	next)	=>	{	

										response.send('Hello	Morgan!')	

						})	

5.	 Listen	on	port	1337	for	new	connections:

132

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

							node	morgan-logger.js

8.	 To	see	the	result	in	your	terminal,	in	your	web	browser,
navigate	to:

								http://localhost:1337/

								http://localhost:1337/example

133

Managing	and	creating
virtual	domains
Managing	virtual	domains	is	really	easy	with	ExpressJS.	Imagine	that
you	have	two	or	more	subdomains,	and	you	want	to	serve	two	different
web	applications.	However,	you	do	not	want	to	create	a	different	web
server	application	for	each	subdomain.	In	this	kind	of	situation,
ExpressJS	allows	developers	to	manage	virtual	domains	within	a	single
web	server	application	using	vhost	https://expressjs.com/en/resources/middlewar
e/vhost.html.

vhost	is	a	configurable	middleware	function	that	accepts	two
arguments.	The	first	one	is	the	hostname.	The	second	argument	is	the
request	handler	which	will	be	called	when	the	hostname	matches.

The	hostname	follows	the	same	rules	as	route	paths	do.	They	can	be	either
a	string	or	a	regular	expression.

https://expressjs.com/en/resources/middleware/vhost.html

134

Getting	ready
Create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"vhost":	"3.0.2"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

135

How	to	do	it...
Build	two	mini	applications	using	Router	that	will	be	served	in	two
different	sub-domains:

1.	 Create	a	new	file	named	virtual-domains.js
2.	 Include	vhost	NPM	module.	Then,	initialize	a	new	ExpressJS

application:

						const	express	=	require('express')	

						const	vhost	=	require('vhost')	

						const	app	=	express()	

3.	 Define	two	routers	that	we	will	use	to	build	two	mini-
applications:

						const	app1	=	express.Router()	

						const	app2	=	express.Router()	

4.	 Add	a	route	method	to	handle	GET	requests	for	path	"/"	in	the
first	router:

						app1.get('/',	(request,	response,	next)	=>	{	

								response.send('This	is	the	main	application.')	

						})	

5.	 Add	a	route	method	to	handle	GET	requests	for	path	"/"	in	the
second	router:

136

						app2.get('/',	(request,	response,	next)	=>	{	

									response.send('This	is	a	second	application.')	

					})	

6.	 Mount	our	routers	to	our	ExpressJS	application.	Serve	the	first
application	under	localhost	and	the	second	under	second.localhost:

						app.use(vhost('localhost',	app1))	

						app.use(vhost('second.localhost',	app2))	

7.	 Listen	on	port	1337	for	new	connections:

						app.listen(

									1337,	

									()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

8.	 Save	the	file
9.	 Open	a	terminal	and	run:

						node	virtual-domains.js	

10.	 To	see	the	result,	in	your	web	browser	navigate	to:

								http://localhost:1337/

								http://second.localhost:1337/

137

There's	more...
vhost	adds	a	vhost	object	to	the	request	object,	which	contains	the
complete	hostname	(displaying	the	hostname	and	port),	hostname
(without	the	port),	and	matching	strings.	These	give	you	more	control
in	how	to	handle	virtual	domains.

For	example,	we	could	write	an	application	that	allows	users	to	have
their	own	sub-domain	with	their	name:

1.	 Create	a	new	file	named	user-subdomains.js
2.	 Include	the	vhost	NPM	module.	Then,	initialize	a	new

ExpressJS	application:

						const	express	=	require('express')	

						const	vhost	=	require('vhost')	

						const	app	=	express()	

3.	 Define	a	new	router.	Then,	add	a	route	method	to	handle	GET
requests	on	path	"/".	Use	the	vhost	object	to	access	the	array	of
subdomains:

							const	users	=	express.Router()	

							users.get('/',	(request,	response,	next)	=>	{	

								const	username	=	request	

												.vhost[0]	

												.split('-')	

												.map(name	=>	(

																name[0].toUpperCase()	+	

																name.slice(1)	

))	

												.join('	')	

138

								response.send(`Hello,	${username}`)	

					})	

4.	 Mount	the	router:

							app.use(vhost('*.localhost',	users))	

5.	 Listen	on	port	1337	for	new	connections:

						app.listen(

											1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

						node	user-subdomains.js	

8.	 To	see	the	result,	in	your	web	browser,	navigate	to:

								http://john-smith.localhost:1337/

								http://jx-huang.localhost:1337/

								http://batman.localhost:1337/

139

Securing	an	ExpressJS
web	application	with
Helmet
Helmet	allows	to	protect	web	server	applications	against	common
attacks,	such	as	cross-site	scripting	(XSS),	insecure	requests,	and
clickjacking.

Helmet	is	a	collection	of	12	middleware	functions	that	allow	you	to	set
specific	HTTP	headers:

1.	 Content	Security	Policy	(CSP):	This	is	an	effective	way	to	whitelist
what	kind	of	external	resources	are	allowed	in	your	web
application,	such	as	JavaScript,	CSS,	and	images,	for	instance.

2.	 Certificate	Transparency:	This	is	a	way	of	providing	more
transparency	for	certificates	issued	for	a	specific	domain	or
specific	domains
https://sites.google.com/a/chromium.org/dev/Home/chromium-

security/certificate-transparency.
3.	 DNS	Prefetch	Control:	This	tells	the	browser	if	it	should	perform

domain	name	resolution	(DNS)	on	resources	that	are	not	yet
loaded,	such	as	links.

4.	 Frameguard:	This	helps	to	prevent	clickjacking	by	telling	the
browser	not	to	allow	your	web	application	to	be	put	inside	an
iframe.

5.	 Hide	Powered-By:	This	simply	hides	the	X-Powered-By	header
indicates	not	to	display	what	technology	powers	the	server.

https://sites.google.com/a/chromium.org/dev/Home/chromium-security/certificate-transparency

140

ExpressJS	sets	this	header	to	"Express"	by	default.
6.	 HTTP	Public	Key	Pinning:	This	helps	to	prevent	man-in-the-

middle-attacks	by	pinning	your	web	application's	public	keys
to	the	Public-Key-Pinsheader.

7.	 HTTP	Strict	Transport	Security:	This	tells	the	browser	to	strictly
stick	to	the	HTTPs	version	of	your	web	application.

8.	 IE	No	Open:	This	prevents	Internet	Explorer	from	executing
untrusted	downloads,	or	HTML	files,	on	the	context	of	your
site,	thus	preventing	the	injection	of	malicious	scripts.

9.	 No	Cache:	This	tells	the	browser	to	disable	browser	caching.
10.	 Don't	Sniff	Mimetype:	This	forces	the	browser	to	disable	mime

sniffing	or	guessing	the	content	type	of	a	served	file.

11.	 Referrer	Policy:	The	referrer	headers	provide	the	server	with	data
regarding	where	the	request	was	originated.	It	allows
developers	to	disable	it,	or	set	a	stricter	policy	for	setting	a
referrer	header.

12.	 XSS	Filter:	This	prevents	reflected	cross-site	scripting	(XSS)
attacks	by	setting	the	X-XSS-Protection	header.

141

Getting	ready
In	this	recipe,	we	will	use	most	of	the	middleware	functions	provided
by	Helmet	to	secure	our	ExpressJS	web	application	against	common
attacks.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"body-parser":	"1.18.2",	

								"express":	"4.16.3",	

								"helmet":	"3.12.0",	

								"uuid":	"3.2.1"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

142

How	to	do	it...
1.	 Create	a	new	file	named	secure-helmet.js
2.	 Include	the	ExpressJS,	helmet,	and	body	NPM	modules:

						const	express	=	require('express')	

						const	helmet	=	require('helmet')	

						const	bodyParser	=	require('body-parser')	

						const	uuid	=	require('uuid/v1')	

						const	app	=	express()	

3.	 Generate	a	random	ID	which	will	be	used	for	nonce	which	is	an
HTML	attribute	used	for	whitelist	which	scripts	or	styles	are
allowed	to	be	executed	inline	in	the	HTML	code:

						const	suid	=	uuid()	

4.	 Use	body	parser	to	parse	JSON	request	body	for	json	and
application/csp-report	content	types.	application/csp-report	is	a
content	type	that	contains	a	JSON	request	body	of	type	json
which	is	sent	by	the	browser	when	one	or	several	CSP	rules	are
violated:

						app.use(bodyParser.json({	

										type:	['json',	'application/csp-report'],	

						}))	

143

5.	 Use	the	Content	Security	Policy	middleware	function	to	define
directives.	defaultSrc	specifies	where	resources	can	be	loaded
from.	The	self	option	specifies	to	load	resources	only	from	your
own	domain.	We	will	use	none	instead,	which	means	that	no
resources	will	be	loaded.	However,	because	we	are	whitelisting
scriptSrc,	we	will	be	able	to	load	Javascript	scripts	but	only	the
ones	that	have	the	nonce	that	we	will	specify.	The	reportUri	is
used	to	tell	the	browser	where	to	send	violation	reports	of	our
Content	Security	Policy:

						app.use(helmet.contentSecurityPolicy({	

										directives:	{	

														//	By	default	do	not	allow	unless	whitelisted	

														defaultSrc:	[`'none'`],	

															//	Only	allow	scripts	with	this	nonce	

														scriptSrc:	[`'nonce-${suid}'`],	

														reportUri:	'/csp-violation',	

										}	

						}))	

6.	 Add	a	route	method	to	handle	POST	request	for	path	"/csp-
violation"	to	receive	violation	reports	from	the	client:

						app.post('/csp-violation',	(request,	response,	next)	=>	{	

										const	{	body	}	=	request	

										if	(body)	{	

													console.log('CSP	Report	Violation:')	

													console.dir(body,	{	colors:	true,	depth:	5	})	

									}	

									response.status(204).send()	

						})	

7.	 Use	the	DNS	Prefetch	Control	middleware	to	disable	prefetch	of
resources:

144

						app.use(helmet.dnsPrefetchControl({	allow:	false	}))	

8.	 Use	the	Frameguard	middleware	function	to	disable	your
application	from	being	loaded	inside	a	iframe:

						app.use(helmet.frameguard({	action:	'deny'	}))	

9.	 Use	the	hidePoweredBy	middleware	function	to	replace	the	X-
Powered-By	header	and	set	a	fake	one:

						app.use(helmet.hidePoweredBy({	

										setTo:	'Django/1.2.1	SVN-13336',	

						}))	

10.	 Use	the	ieNoOpen	middleware	function	to	disable	IE	untrusted
executions:

							app.use(helmet.ieNoOpen())	

11.	 Use	the	noSniff	middleware	function	to	disable	mime-type
guessing:

						app.use(helmet.noSniff())	

12.	 Use	the	referrerPolicy	middleware	function	to	make	the	header
available	only	for	our	domain:

							app.use(helmet.referrerPolicy({	policy:	'same-origin'	}))	

145

13.	 Use	the	xssFilter	middleware	function	to	prevent	Reflected	XSS
attacks:

						app.use(helmet.xssFilter())	

14.	 Add	a	route	method	to	handle	GET	requests	on	path	"/"	and	serve
a	sample	HTML	content	that	will	try	to	load	an	image	from	an
external	source,	try	to	execute	an	inline	script,	and	try	to	load
an	external	script	without	a	nonce	specified.	We	will	add	a	valid
script	as	well	that	is	allowed	to	be	executed	because	a	nonce
attribute	will	be	specified:

						app.get('/',	(request,	response,	next)	=>	{	

									response.send(`	

									<!DOCTYPE	html>	

									<html	lang="en">	

									<head>	

													<meta	charset="utf-8">	

													<title>Web	App</title>	

									</head>	

										<body>	

														

																

													<script>	

																		alert('This	does	not	get	executed!')	

														</script>	

														<script	src="http://evil.com/evilstuff.js"></script>	

														<script	nonce="${suid}">	

																		document.getElementById('txtlog')	

																				.innerText	=	'Hello	World!'	

														</script>	

											</body>	

									</html>	

							`)	

					})	

15.	 Listen	on	port	1337	for	new	connections:

146

					app.listen(

										1337,	

									()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

16.	 Save	the	file
17.	 Open	a	terminal	and	run:

						node	secure-helmet.js	

18.	 To	see	the	results,	in	your	web	browser,	navigate	to:

								http://localhost:1337/

147

How	it	works...
How	everything	works	is	pretty	straight	forward	with	Helmet.	You
specify	the	security	measures	you	want	to	implement	by	choosing	and
applying	a	specific	Helmet	middleware	function	and	Helmet	will	do	the
work	of	setting	the	right	headers	that	will	be	sent	to	the	client.

In	the	client	side	(web	browser),	everything	just	works	by	its	own.	The
web	browser	is	in	charge	of	interpreting	the	headers	sent	by	the	server
and	applying	the	security	policies.	This	also	means	that	old	browsers
cannot	support	or	understand	all	these	headers.	Saying	that,	there	are
not	many	good	reasons	why	you	would	want	to	support	old	web
browsers	if	you	have	security	in	mind	for	your	application.

If	you	are	using	Chrome,	for	instance,	you	should	be	able	to	see
something	similar	to	this	in	the	console:

Chrome	Dev	Tools	|	Console	displaying	CSP	violation

148

1.	 In	the	Terminal,	you	should	be	able	to	see	similar	output	to	the
following	that	is	sent	by	the	browser:

						CSP	Report	Violation:	{	

										"csp-report":	{	

															"document-uri":	"http://localhost:1337/",	

														"referrer":	"",	

														"violated-directive":	"img-src",	

														"effective-directive":	"img-src",	

														"original-policy":	"default-src	'none';	script-src														

									'[nonce]';	report-uri	/csp-violation",	

														"disposition":	"enforce",	

														"blocked-uri":	"http://evil.com/pic.jpg",	

														"line-number":	9,	

														"source-file":	"http://localhost:1337/",	

														"status-code":	200	

										}	

						}		

						CSP	Report	Violation:	{	

										"csp-report":	{	

														"document-uri":	"http://localhost:1337/",	

														"referrer":	"",	

														"violated-directive":	"script-src",	

														"effective-directive":	"script-src",	

														"original-policy":	"default-src	'none';	script-src								

							'[nonce]';	report-uri	/csp-violation",	

														"disposition":	"enforce",	

														"blocked-uri":	"inline",	

														"line-number":	9,	

														"status-code":	200	

										}	

						}		

						CSP	Report	Violation:	{	

										"csp-report":	{	

														"document-uri":	"http://localhost:1337/",	

														"referrer":	"",	

														"violated-directive":	"script-src",	

														"effective-directive":	"script-src",	

														"original-policy":	"default-src	'none';	script-src	

						'[nonce]';	report-uri	/csp-violation",	

														"disposition":	"enforce",	

														"blocked-uri":	"http://evil.com/evilstuff.js",	

														"status-code":	200	

										}	

						}	

149

Using	template	engines
Template	engines	allow	you	to	generate	HTML	code	in	a	more
convenient	way.	Templates	or	views	can	be	written	in	any	format,
interpreted	by	a	template	engine	that	will	replace	variables	with	other
values,	and	finally	transform	to	HTML.

A	big	list	of	template	engines	that	work	out	of	the	box	with	ExpressJS,
is	available	in	the	official	website	at
https://github.com/expressjs/express/wiki#template-engines.

https://github.com/expressjs/express/wiki#template-engines

150

Getting	ready
In	this	recipe,	you	will	build	your	own	template	engine.	To	develop	and
use	your	own	template	engine,	you	will	first	need	to	register	it,	then
define	the	path	where	the	views	are	located,	and	finally	tell	ExpressJS
which	template	engine	to	use.

						app.engine('...',	(path,	options,	callback)	=>	{	...	});	

						app.set('views',	'./');	

						app.set('view	engine',	'...');	

Before	you	start,	create	a	new	package.json	file	with	the	following
content:

						{	

										"dependencies":	{	

														"express":	"4.16.3"	

										}	

						}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

							npm	install

151

How	to	do	it...
First	create	a	views	directory	which	will	contain	a	simple	template:

1.	 Create	a	new	directory	named	views
2.	 Create	a	new	file	named	home.tpl	inside	our	views	directory
3.	 Add	the	following	code:

						<!DOCTYPE	html>	

							<html	lang="en">	

						<head>	

										<meta	charset="utf-8">	

										<title>Using	Template	Engines</title>	

						</head>	

						<body>	

										<section	role="application">	

														<h1>%title%</h1>	

														<p>%description%</p>	

										</section>	

						</body>	

						</html>	

4.	 Save	the	file

Now,	create	a	new	template	engine	that	will	transform	the	previous
template	into	HTML	and	replace	%[var]%	with	the	options	provided:

1.	 Move	out	of	the	views	directory
2.	 Create	a	new	file	named	my-template-engine.js

3.	 Include	the	ExpressJS	and	fs	(file	system)	libraries.	Then,

152

initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	fs	=	require('fs')	

						const	app	=	express()	

4.	 Use	the	engine	method	to	register	a	new	template	engine	named
tpl.	We	will	read	the	file's	content	and	replace	%[var]%	with	the
one	specified	in	the	options	object:

							app.engine('tpl',	(filepath,	options,	callback)	=>	{	

											fs.readFile(filepath,	(err,	data)	=>	{	

														if	(err)	{	

																	return	callback(err)	

													}	

													const	content	=	data	

																	.toString()	

																	.replace(/%[a-z]+%/gi,	(match)	=>	{	

																					const	variable	=	match.replace(/%/g,	'')	

																				if	(Reflect.has(options,	variable))	{	

																								return	options[variable]	

																					}	

																				return	match	

																})	

														return	callback(null,	content)	

										})	

					})	

5.	 Define	the	path	where	the	views	are	located.	Our	template	is
located	in	the	views	directory:

							app.set('views',	'./views')	

6.	 Tell	ExpressJS	to	use	our	template	engine:

153

						app.set('view	engine',	'tpl')	

7.	 Add	a	route	method	to	handle	GET	requests	for	path	"/"	and
render	our	home	template.	Provide	the	title	and	description
options	which	will	replace	%title%	and	%description%	in	our
template:

					app.get('/',	(request,	response,	next)	=>	{	

										response.render('home',	{	

														title:	'Hello',	

															description:	'World!',	

									})	

						})	

8.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

9.	 Save	the	file
10.	 Open	a	terminal	and	run:

				node	my-template-engine.js

11.	 In	your	browser,	navigate	to:

						http://localhost:1337/

The	template	engine	we	just	have	wrote	doesn't	escape	HTML	characters.	That	means,
you	should	be	careful	if	replacing	those	properties	with	data	gotten	from	the	client
because	it	may	be	vulnerable	to	XSS	attacks.	You	may	want	to	use	a	template	engine	from

154

the	official	ExpressJS	website	that	is	safer.

155

Debugging	your
ExpressJS	web
application
Debugging	information	on	ExpressJS	about	all	of	the	cycle	of	a	web
application	is	something	simple.	ExpressJS	uses	the	debug	NPM
module	internally	to	log	information.	Unlike	console.log,	debug	logs	can
easily	be	disabled	on	production	mode.

156

Getting	ready
In	this	recipe,	you	will	see	how	to	debug	your	ExpressJS	web
application.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

				"dependencies":	{	

								"debug":	"3.1.0",	

								"express":	"4.16.3"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

157

How	to	do	it...
1.	 Create	a	new	file	named	debugging.js
2.	 Initialize	a	new	ExpressJS	application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 Add	a	route	method	to	handle	GET	requests	for	any	path:

						app.get('*',	(request,	response,	next)	=>	{	

										response.send('Hello	there!')	

						})	

4.	 Listen	on	port	1337	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

5.	 Save	the	file
6.	 Open	a	terminal	and	run:
7.	 On	Windows:

						set	DEBUG=express:*	node	debugging.js

158

8.	 On	Linux	or	MacOS:

						DEBUG=express:*	node	debugging.js	

9.	 In	your	web	browser,	navigate	to:

						http://localhost:1337/

10.	 Observe	your	terminal's	output	for	logs

159

How	it	works...
The	DEBUG	environment	variable	is	used	to	tell	the	debug	module	which
parts	of	the	ExpressJS	application	to	debug.	In	our	previously	written
code,	express:*	tells	the	debug	module	to	log	everything	related	to	the
express	application.

We	could	use	DEBUG=express:router	to	displays	logs	related	to	the	Router	or
routing	of	ExpressJS.

160

There's	more...
You	can	use	the	debug	NPM	module	in	your	own	projects.	For
example:

1.	 Create	a	new	file	named	myapp.js
2.	 Add	the	following	code:

						const	express	=	require('express')	

						const	app	=	express()	

						const	debug	=	require('debug')('myapp')	

						app.get('*',	(request,	response,	next)	=>	{	

										debug('Request:',	request.originalUrl)	

										response.send('Hello	there!')	

						})	

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

3.	 Save	the	file
4.	 Open	a	terminal	and	run:
5.	 On	Windows:

				set	DEBUG=myapp	node	myapp.js

6.	 On	Linux	and	MacOS:

						DEBUG=myapp	node	myapp.js

161

7.	 In	your	web	browser,	navigate	to:
8.	 Observe	your	Terminal's	output.	It	would	display	something

like:

						Web	Server	running	on	port	1337	

								myapp	Request:	/	+0ms	

You	can	use	the	DEBUG	environment	variable	to	tell	the	debug	module	to
displays	logs	not	only	for	myapp	but	also	for	ExpressJS	like	so:

On	Windows:

set	DEBUG=myapp,express:*	node	myapp.js	

On	Linux	and	MacOS:

DEBUG=myapp,express:*	node	myapp.js

162

Building	a	RESTful	API
In	this	chapter,	we	will	cover	the	following	recipes:

CRUD	operations	using	ExpressJS'	route	methods

CRUD	operations	with	Mongoose

Using	Mongoose	query	builders

Defining	document	instance	methods

Defining	static	model	methods

Writing	middleware	functions	for	Mongoose

Writing	custom	validators	for	Mongoose's	schemas

Building	a	RESTful	API	to	manage	users	with	ExpressJS	and
Mongoose

163

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git
repository	of	this	book.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter03

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/73dE6u

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter03
https://goo.gl/73dE6u

164

Introduction
Representation	State	Transfer	(REST)	is	an	architectural	style	that
the	web	was	built	on.	More	specifically,	the	HTTP	1.1	protocol
standards	were	built	using	the	REST	principles.	REST	provides	a
representation	of	a	resource.	URLs	(Uniform	Resource	Locator)	are
used	to	define	the	location	of	a	resource	and	tell	the	browser	where	it	is
located.

A	RESTful	API	is	a	web	service	API	that	adheres	to	this	architectural
style.

The	most	commonly	used	HTTP	verbs	or	methods	are:	POST,	GET,	PUT,
and	DELETE.	These	methods	are	the	basis	for	persistent	storage	and	are
known	as	CRUD	operations	(Create,	Read,	Update,	and	Delete).

In	this	chapter,	the	recipes	will	be	focused	on	building	a	RESTful	API
using	the	REST	architectural	style	with	ExpressJS	and	Mongoose.

165

CRUD	operations	using
ExpressJS'	route
methods
ExpressJS'	router	has	equivalent	methods	to	handle	HTTP	methods.	In
other	words,	the	HTTP	methods	POST,	GET,	PUT,	and	DELETE	can	be	handled
by	this	code:

						/*	Add	a	new	user	*/	

						app.post('/users',	(request,	response,	next)	=>	{	})	

						/*	Get	user	*/	

						app.get('/users/:id',	(request,	response,	next)	=>	{	})	

						/*	Update	a	user	*/	

						app.put('/users/:id',	(request,	response,	next)	=>	{	})	

						/*	Delete	a	user	*/	

						app.delete('/users/:id',	(request,	response,	next)	=>	{	})		

It's	good	to	think	of	every	URL	as	a	noun	and	because	of	that	a	verb	can
act	on	it.	In	fact,	HTTP	methods	are	also	known	as	HTTP	verbs.	If	we
think	about	them	as	verbs,	when	a	request	is	made	to	our	RESTful	API,
they	can	be	understood	as:

Post	a	user

Get	a	user

Update	a	user

Delete	a	user.

In	the	MVC	(model-view-controller)	architectural	pattern,	controllers
are	in	charge	of	transforming	input	to	something	a	model	or	view	can

166

understand.	In	other	words,	they	transform	input	into	actions	or
commands	and	sends	them	to	the	model	or	view	to	update	accordingly.

ExpressJS'	route	methods	usually	act	as	controllers.	They	just	get	input
from	a	client	such	as	a	request	from	the	browser,	and	then	converts	the
input	to	actions.	These	actions	are	then	sent	to	the	model,	which	is	the
business	logic	of	your	application,	such	as	a	mongoose	model,	or	to	a
view	(a	ReactJS	client	application)	to	update.

167

Getting	ready
Keeping	in	mind	that	we	can	invoke	an	action	over	a	resource	using
HTTP	methods,	we	will	see	how	to	build	a	RESTful	API	web	service
based	on	those	concepts.	Before	you	start,	create	a	new	package.json	file
with	the	following	code:

						{	

								"dependencies":	{	

										"express":	"4.16.3",	

										"node-fetch":	"2.1.1",	

										"uuid":	"3.2.1"	

								}	

						}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running	this
line	of	code:

						npm	install

168

How	to	do	it...
Build	a	RESTful	API	with	an	in-memory	database	or	an	array	of
objects	that	will	contain	a	list	of	users.	We	will	allow	CRUD	operations
using	HTTP	methods	to	add	a	new	user,	get	a	user	or	list	of	users,
update	a	user's	data,	and	delete	a	user:

1.	 Create	a	new	file	named	restfulapi.js
2.	 Import	the	packages	that	we	need	and	create	an	ExpressJS

application:

					const	express	=	require('express')	

						const	uuid	=	require('uuid')	

						const	app	=	express()	

3.	 Define	an	in-memory	database:

						let	data	=	[

										{	id:	uuid(),	name:	'Bob'	},	

										{	id:	uuid(),	name:	'Alice'	},	

]	

4.	 Create	a	model	which	will	contain	functions	for	making	CRUD
operations:

						const	usr	=	{	

										create(name)	{	

														const	user	=	{	id:	uuid(),	name	}	

														data.push(user)	

														return	user	

169

										},	

										read(id)	{	

														if	(id	===	'all')	return	data	

														return	data.find(user	=>	user.id	===	id)	

										},	

										update(id,	name)	{	

														const	user	=	data.find(usr	=>	usr.id	===	id)	

														if	(!user)	return	{	status:	'User	not	found'	}	

														user.name	=	name	

														return	user	

										},	

										delete(id)	{	

														data	=	data.filter(user	=>	user.id	!==	id)	

														return	{	status:	'deleted',	id	}	

										}	

						}	

5.	 Add	a	request	handler	for	the	post	method	that	will	be	used	as	a
Create	operation.	A	new	user	will	be	added	to	the	data	array:

						app.post('/users/:name',	(req,	res)	=>	{	

										res.status(201).json(usr.create(req.params.name))	

						})	

6.	 Add	a	request	handler	for	the	get	method	that	will	be	used	as	a
Read	or	Retrieve	operation.	If	an	id	is	given,	look	for	the	user	in
the	data	array.	However,	If	the	given	id	is	"all",	it	will	return	the
whole	list	of	users:

						app.get('/users/:id',	(req,	res)	=>	{	

										res.status(200).json(usr.read(req.params.id))	

						})	

7.	 Add	a	request	handler	for	the	put	method	that	will	be	used	as	an
Update	operation.	An	id	needs	to	be	provided	in	order	to	update	a
specific	user	in	the	data	array:

170

						app.put('/users/:id=:name',	(req,	res)	=>	{	

										res.status(200).json(usr.update(

														req.params.id,	

														req.params.name,	

))	

						})	

8.	 Add	a	request	handler	for	the	delete	method	that	will	be	used	as
a	Delete	operation.	It	will	look	for	the	user	in	the	data	array	and
remove	it:

						app.delete('/users/:id',	(req,	res)	=>	{	

										res.status(200).json(usr.delete(req.params.id))	

						})	

9.	 Start	your	application	listening	on	port	1337	for	new
connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

10.	 Save	the	file.
11.	 Open	a	Terminal	and	run	this	code:

						node	restfulapi.js

171

Let's	test	it...
To	make	it	simple,	create	a	script	that	will	request	and	make	CRUD
operations	on	our	RESTful	API	server:

1.	 Create	a	new	file	named	test-restfulapi.js.
2.	 Add	the	following	code:

						const	fetch	=	require('node-fetch')	

						const	r	=	async	(url,	method)	=>	(

										await	fetch(`http://localhost:1337${url}`,	{	method	})	

														.then(r	=>	r.json())	

)	

						const	log	=	(...obj)	=>	(

										obj.forEach(o	=>	console.dir(o,	{	colors:	true	}))	

)	

						async	function	test()	{	

										const	users	=	await	r('/users/all',	'get')	

										const	{	id	}	=	users[0]	

										const	getById	=	await	r(`/users/${id}`,	'get')	

										const	updateById	=	await	r(`/users/${id}=John`,	'put')	

										const	deleteById	=	await	r(`/users/${id}`,	'delete')	

										const	addUsr	=	await	r(`/users/Smith`,	'post')	

										const	getAll	=	await	r('/users/all',	'get')	

										log('[GET]	users:',	users)	

										log(`[GET]	a	user	with	id="${id}":`,	getById)	

										log(`[PUT]	a	user	with	id="${id}":`,	updateById)	

										log(`[POST]	a	new	user:`,	addUsr)	

										log(`[DELETE]	a	user	with	id="${id}":`,	deleteById)	

										log(`[GET]	users:`,	getAll)	

						}	

						test()	

3.	 Save	the	file.
4.	 Open	a	new	Terminal	and	run	this	code:

172

				node	test-restfulapi.js

		

173

How	it	works...
Our	RESTful	API	application	will	be	running	locally	on	port	1337.
When	running	the	test	code,	it	will	connect	to	it	and	make	several
requests	using	different	HTTP	methods	to	create	a	user,	retrieve	a	user,
update	a	user,	and	delete	a	user.	All	the	operations	will	be	logged	in	the
Terminal.

If	you	prefer	to	test	it	yourself,	you	can	replace	all	the	code	inside	the
test	function,	and	use	the	r	function	to	make	custom	requests.	For
instance,	to	create	a	new	user	called	Smith:

r(`/users/Smith`,	'post')	

174

CRUD	operations	with
Mongoose
One	of	many	reasons	why	developers	opt	to	use	Mongoose	instead	of
the	official	MongoDB	driver	for	Node.js	is	that	it	allows	you	to	create
data	structures	with	ease	by	using	schemas	and	also	because	of	the
built-in	validation.	MongoDB	is	a	document-oriented	database,
meaning	that	the	structure	of	the	documents	varies.

In	the	MVC	architectural	pattern,	Mongoose	is	often	used	for	creating
models	that	shape	or	define	data	structures.

This	is	how	a	typical	Mongoose	schema	would	be	defined	and	then
compiled	into	a	model:

						const	PersonSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

						})	

						const	Person	=	connection.model('Person',	PersonSchema)	

Model	names	should	be	in	singular	since	Mongoose	will	make	them	plural	and	lowercase
them	when	saving	the	collection	to	the	database.	For	instance,	if	the	model	is	named
"User",	it	will	be	saved	as	a	collection	named	"users"	in	MongoDB.	Mongoose	includes
an	internal	dictionary	to	pluralize	common	names.	That	means	if	your	model's	name	is	a
common	name,	such	as	"Person",	it	will	be	saved	in	MongoDB	as	a	collection	named
"people".

Mongoose	allows	the	following	types	to	define	a	schema's	path	or
document	structure:

String

Number

Boolean

175

Array

Date

Buffer

Mixed

Objectid

Decimal128

A	schema	type	can	be	declared	by	using	directly	the	global	constructor
function	for	String,	Number,	Boolean,	Buffer,	and	Date:

						const	{	Schema}	=	require('mongoose')	

						const	PersonSchema	=	new	Schema({	

										name:	String,	

										age:	Number,	

										isSingle:	Boolean,	

										birthday:	Date,	

										description:	Buffer,	

						})	

These	schema	types	are	also	available	under	an	object	called	SchemaTypes
in	the	exported	mongoose	object:

						const	{	Schema,	SchemaTypes	}	=	require('mongoose')	

						const	PersonSchema	=	new	Schema({	

										name:	SchemaTypes.String,	

										age:	SchemaTypes.Number,	

										isSingle:	SchemaTypes.Boolean,	

										birthday:	SchemaTypes.Date,	

										description:	SchemaTypes.Buffer,	

						})	

Schema	types	can	be	declared	using	an	object	as	a	property	that	gives
you	more	control	over	the	specific	schema	type.	Take	the	following
code,	for	example:

						const	{	Schema	}	=	require('mongoose')	

						const	PersonSchema	=	new	Schema({	

176

										name:	{	type:	String,	required:	true,	default:	'Unknown'	

},	

										age:	{	type:	Number,	min:	18,	max:	80,	required:	true	},	

										isSingle:	{	type:	Boolean	},	

										birthday:	{	type:	Date,	required:	true	},	

										description:	{	type:	Buffer	},	

						})	

Schema	types	can	also	be	arrays.	For	instance,	if	we	want	a	field	to
define	what	are	the	things	the	user	likes	in	an	array	of	strings,	you	could
use	this	code:

						const	PersonSchema	=	new	Schema({	

										name:	String,	

										age:	Number,	

										likes:	[String],	

						})	

To	learn	more	about	schema	types,	visit	the	official	Mongoose
documentation	website:	http://mongoosejs.com/docs/schematypes.html.

http://mongoosejs.com/docs/schematypes.html

177

Getting	ready
In	this	recipe,	you	will	see	how	to	define	a	schema	and	perform	CRUD
operation	on	the	database	collection.	First,	ensure	that	you	have
MongoDB	installed	and	it's	running.	As	an	alternative,	if	you	prefer,	a
MongoDB	DBaaS	(Database	as	a	Service)	instance	in	the	cloud	will
also	do.	Before	you	start,	create	a	new	package.json	file	with	the
following	code:

						{	

								"dependencies":	{	

										"mongoose":	"5.0.11"	

							}	

					}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running	this
code:

						npm	install

178

How	to	do	it...
Define	a	user	schema	that	will	contain	user's	first	name,	last	name,	and
an	array	of	strings	that	define	the	things	the	user	likes:

1.	 Create	a	new	file	named	mongoose-models.js
2.	 Include	the	Mongoose	NPM	module.	Then,	create	a	connection

to	MongoDB:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UserSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

										likes:	[String],	

						})	

4.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UserSchema)	

5.	 Define	a	function	that	will	be	used	for	adding	new	users:

179

						const	addUser	=	(firstName,	lastName)	=>	new	User({	

										firstName,	

										lastName,	

						}).save()	

6.	 Define	a	function	that	will	be	used	for	retrieving	a	user	from
the	collection	of	users	by	its	id:

						const	getUser	=	(id)	=>	User.findById(id)	

7.	 Define	a	function	that	will	remove	the	user	from	the	collection
of	users	by	its	id:

						const	removeUser	=	(id)	=>	User.remove({	id	})	

8.	 Define	an	event	listener	that	will	perform	CRUD	operations
once	the	there	is	a	connection	to	the	database.	First,	add	a	new
user	and	save	it.	Then,	retrieve	the	same	user	using	its	id.	Next,
modify	the	user's	properties	and	save	it.	Finally,	remove	the
user	from	the	collection	by	its	id:

						connection.once('connected',	async	()	=>	{	

										try	{	

														//	Create	

														const	newUser	=	await	addUser('John',	'Smith')	

														//	Read	

														const	user	=	await	getUser(newUser.id)	

														//	Update	

														user.firstName	=	'Jonny'	

														user.lastName	=	'Smithy'	

														user.likes	=	[

																		'cooking',	

																		'watching	movies',	

																		'ice	cream',	

]	

180

														await	user.save()	

														console.log(JSON.stringify(user,	null,	4))	

														//	Delete	

														await	removeUser(user.id)	

										}	catch	(error)	{	

														console.dir(error.message,	{	colors:	true	})	

										}	finally	{	

														await	connection.close()	

										}	

						})	

9.	 Save	the	file.
10.	 Open	a	Terminal	and	run	this	code:

				node	mongoose-models.js

Executing	the	previous	command	in	the	Terminal,	if	successful,	would
display	something	similar	to	the	following,	for	instance,	a	code	such	as
this:

						{	

										"likes":	[

								"cooking",	

														"watching	movies",	

														"ice	cream"	

],	

										"_id":	"[some	id]",	

										"firstName":	"Jonny",	

										"lastName":	"Smithy",	

										"__v":	1	

						}	

181

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
NPM	Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

182

Using	Mongoose	query
builders
Every	Mongoose	model	has	static	helper	methods	to	do	several	kinds	of
operations,	such	as	retrieving	a	document.	When	a	callback	is	passed	to
these	helper	methods,	the	operation	is	executed	immediately:

						const	user	=	await	User.findOne({	

										firstName:	'Jonh',	

										age:	{	$lte:	30	},	

						},	(error,	document)	=>	{	

										if	(error)	return	console.log(error)	

										console.log(document)	

						})	

Otherwise,	if	there	is	no	defined	callback,	a	query	builder	interface	is
returned,	which	can	be	later	executed:

						const	user	=	User.findOne({	

										firstName:	'Jonh',	

										age:	{	$lte:	30	},	

						})	

						user.exec((error,	document)	=>	{	

										if	(error)	return	console.log(error)	

										console.log(document)	

						})	

Queries	also	have	a	.then	function	which	can	be	used	as	a	Promise.	When
.then	is	called,	it	first	executes	the	query	internally	with	.exec	which	then
returns	a	Promise.	This	allows	us	to	use	async/await	as	well.	Inside	a	async
function,	for	instance:

						try	{	

										const	user	=	await	User.findOne({	

														firstName:	'Jonh',	

183

														age:	{	$lte:	30	},	

										})	

										console.log(user)	

						}	catch	(error)	{	

										console.log(error)	

						}		

There	are	two	ways	that	we	can	make	a	query.	One	is	by	providing	a
JSON	object	that	is	used	as	a	condition	and	the	other	way	allows	you	to
create	a	query	using	chaining	syntax.	The	chaining	syntax	will	feel
more	comfortable	to	developers	who	are	more	familiar	with	SQL
databases.	For	example:

						try	{	

										const	user	=	await	User.findOne()	

								.where('firstName',	'John')	

														.where('age').lte(30)	

										console.log(user)	

						}							catch	(error)	{	

										console.log(error)	

						}		

184

Getting	ready
In	this	recipe,	you	will	build	up	queries	using	chaining	syntax	and	using
async/await	functions.	First,	ensure	that	you	have	MongoDB	installed
and	it's	running.	As	an	alternative,	if	you	prefer,	a	MongoDB	DBaaS
instance	in	the	cloud	will	also	do.	Before	you	start,	create	a	new
package.json	file	with	the	following	code:

						{	

								"dependencies":	{	

										"mongoose":	"5.0.11"	

								}	

						}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install		

185

How	to	do	it...
1.	 Create	a	new	file	named	chaining-queries.js

2.	 Include	the	Mongoose	NPM	module.	Then,	create	a	new
connection:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UserSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

										age:	Number,	

						})	

4.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UserSchema)	

5.	 Once	connected	to	the	database,	add	a	new	document	to	the
collection	of	users.	Then,	using	chaining	syntax,	query	for	the

186

recently	created	user.	Additionally,	use	the	select	method	to
restrict	which	fields	are	retrieved	from	the	document:

						connection.once('connected',	async	()	=>	{	

										try	{	

														const	user	=	await	new	User({	

																		firstName:	'John',	

																		lastName:	'Snow',	

																		age:	30,	

														}).save()	

														const	findUser	=	await	User.findOne()	

																		.where('firstName').equals('John')	

																		.where('age').lte(30)	

																		.select('lastName	age')	

														console.log(JSON.stringify(findUser,	null,	4))	

														await	user.remove()	

										}	catch	(error)	{	

														console.dir(error.message,	{	colors:	true	})	

										}	finally	{	

														await	connection.close()	

										}	

						})	

6.	 Save	the	file
7.	 Open	a	Terminal	and	run:

				node	chaining-queries.js

		

187

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
NPM	Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

188

Defining	document
instance	methods
Documents	have	their	own	built-in	instance	methods	such	as	save	and
remove.	However,	we	can	write	our	own	instance	methods	as	well.

Documents	are	instances	of	models.	They	can	be	explicitly	created:

						const	instance	=	new	Model()	

Or	they	can	be	the	result	of	a	query:

						Model.findOne([conditions]).then((instance)	=>	{})	

Document	instance	methods	are	defined	in	the	schema.	All	schemas
have	a	method	called	method	which	allows	you	to	define	custom	instance
methods.

189

Getting	ready
In	this	recipe,	you	will	define	a	schema	and	custom	document	instance
methods	for	modifying	and	reading	document	properties.	First,	ensure
that	you	have	MongoDB	installed	and	it's	running.	As	an	alternative,	if
you	prefer,	a	MongoDB	DBaaS	instance	in	the	cloud	will	also	do.
Before	you	start,	create	a	new	package.json	file	with	the	following	code:

{	

		"dependencies":	{	

				"mongoose":	"5.0.11"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running	this
code:

				npm	install

190

How	to	do	it...
1.	 Create	a	new	file	named	document-methods.js
2.	 Include	the	Mongoose	NPM	module.	Then,	create	a	new

connection	to	MongoDB:

						const	mongooconst	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UserSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

										likes:	[String],	

						})	

4.	 Define	a	document	instance	method	for	setting	a	user's	first
name	and	last	name	from	a	string	containing	their	full	name:

						UserSchema.method('setFullName',	function	setFullName(v)	{	

										const	fullName	=	String(v).split('	')	

										this.lastName	=	fullName[0]	||	''	

										this.firstName	=	fullName[1]	||	''	

						})	

191

5.	 Define	a	document	instance	method	for	getting	a	user's	full
name	concatenating	the	firstName	and	lastName	properties:

						UserSchema.method('getFullName',	function	getFullName()	{	

										return	`${this.lastName}	${this.firstName}`	

						})	

6.	 Define	a	document	instance	method	named	loves	that	will
expect	one	argument	that	will	add	to	the	likes	array	of	strings:

						UserSchema.method('loves',	function	loves(stuff)	{	

										this.likes.push(stuff)	

						})	

7.	 Define	a	document	instance	method	named	dislikes	which	will
remove	one	thing	previous	liked	by	the	user	from	the	likes
array:

						UserSchema.method('dislikes',	function	dislikes(stuff)	{	

										this.likes	=	this.likes.filter(str	=>	str	!==	stuff)	

						})	

8.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UserSchema)	

9.	 Once	Mongoose	is	connected	to	the	database,	create	a	new	user
and	use	setFullName	method	to	populate	the	fields	firstName	and
lastName,	then	use	the	loves	method	to	populate	the	likes	array.
Next,	use	chaining	syntax	to	query	for	the	user	in	the	collection
and	use	the	dislikes	method	to	remove	"snakes"	from	the	likes

192

array:

						connection.once('connected',	async	()	=>	{	

										try	{	

														//	Create	

														const	user	=	new	User()	

														user.setFullName('Huang	Jingxuan')	

														user.loves('kitties')	

														user.loves('strawberries')	

														user.loves('snakes')	

														await	user.save()	

														//	Update	

														const	person	=	await	User.findOne()	

																		.where('firstName',	'Jingxuan')	

																		.where('likes').in(['snakes',	'kitties'])	

														person.dislikes('snakes')	

														await	person.save()	

														//	Display	

														console.log(person.getFullName())	

														console.log(JSON.stringify(person,	null,	4))	

														//	Remove	

														await	user.remove()	

										}	catch	(error)	{	

														console.dir(error.message,	{	colors:	true	})	

										}	finally	{	

														await	connection.close()	

										}	

						})	

10.	 Save	the	file.
11.	 Open	a	Terminal	and	run	this	code:

							node	document-methods.js

193

There's	more...
Document	instance	methods	can	also	be	defined	using	the	methods,
schema	property.	For	instance:

UserSchema.methods.setFullName	=	function	setFullName(v)	{	

				const	fullName	=	String(v).split('	')	

				this.lastName	=	fullName[0]	||	''	

				this.firstName	=	fullName[1]	||	''	

}	

194

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
NPM	Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

195

Defining	static	model
methods
Models	have	built-in	static	methods	such	as	find,	findOne,	and
findOneAndRemove.	Mongoose	allow	us	to	define	custom	static	model
methods	as	well.	Static	model	methods	are	defined	in	the	schema	in	the
same	way	as	document	instance	methods	are.

Schemas	have	a	property	called	statics	which	is	an	object.	All	the
methods	defined	inside	the	statics	object	are	passed	to	the	model.	Static
model	methods	can	also	be	defined	by	calling	the	static	schema
method.

196

Getting	ready
In	this	recipe,	you	will	define	a	schema	and	custom	static	model
method	for	expanding	your	model's	capabilities.	First,	ensure	that	you
have	MongoDB	installed	and	it's	running.	As	an	alternative,	if	you
prefer,	a	MongoDB	DBaaS	instance	in	the	cloud	will	also	do.	Before
you	start,	create	a	new	package.json	file	with	the	following	code:

{	

		"dependencies":	{	

				"mongoose":	"5.0.11"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

197

How	to	do	it...
Define	a	static	model	method	called	getByFullName	that	will	allow	you	to
search	for	a	specific	user	using	their	full	name:

1.	 Create	a	new	file	named	static-methods.js
2.	 Include	the	Mongoose	NPM	module	and	create	a	new

connection	to	your	MongoDB:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UsrSchm	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

										likes:	[String],	

						})	

4.	 Define	getByFullName	static	model	method:

						UsrSchm.static('getByFullName',	function	getByFullName(v)	{	

										const	fullName	=	String(v).split('	')	

										const	lastName	=	fullName[0]	||	''	

										const	firstName	=	fullName[1]	||	''	

										return	this.findOne()	

														.where('firstName').equals(firstName)	

198

														.where('lastName').equals(lastName)	

						})	

5.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UsrSchm)	

6.	 Once	connected,	create	a	new	user	and	save	it.	Then,	use	the
getByFullName	static	model	method	to	look	for	the	user	in	the
collection	of	users	using	their	full	name:

						connection.once('connected',	async	()	=>	{	

										try	{	

														//	Create	

														const	user	=	new	User({	

																		firstName:	'Jingxuan',	

																		lastName:	'Huang',	

																		likes:	['kitties',	'strawberries'],	

														})	

														await	user.save()	

														//	Read	

														const	person	=	await	User.getByFullName(

																		'Huang	Jingxuan'	

)	

														console.log(JSON.stringify(person,	null,	4))	

														await	person.remove()	

														await	connection.close()	

										}	catch	(error)	{	

														console.log(error.message)	

										}	

						})	

6.	 Save	the	file
7.	 Open	a	Terminal	and	run	this	code:

				node	static-methods.js

		

199

There's	more...
Static	model	methods	can	also	be	defined	using	the	statics	schema
property.	For	instance:

UsrSchm.statics.getByFullName	=	function	getByFullName(v)	{	

				const	fullName	=	String(v).split('	')	

				const	lastName	=	fullName[0]	||	''	

				const	firstName	=	fullName[1]	||	''	

				return	this.findOne()	

								.where('firstName').equals(firstName)	

								.where('lastName').equals(lastName)	

}	

200

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
NPM	Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

201

Writing	middleware
functions	for	Mongoose
Middleware	functions	in	Mongoose	are	also	called	hooks.	There	are	two
types	of	hooks	pre	hooks	and	post	hooks.

The	difference,	between	pre	hooks	and	post	hooks,	is	pretty	simple.	pre
hooks	are	called	before	a	method	is	called,	and	post	hooks	are	called	after.
For	example:

						const	UserSchema	=	new	Schema({	

										firstName:	String,	

										lastName:	String,	

										fullName:	String,	

						})	

						UserSchema.pre('save',	async	function	preSave()	{	

										this.fullName	=	`${this.lastName}	${this.firstName}`	

						})	

						UserSchema.post('save',	async	function	postSave(doc)	{	

										console.log(`New	user	created:	${doc.fullName}`)	

						})	

						const	User	=	mongoose.model('User',	UserSchema)	

And	later	on,	once	the	connection	is	made	to	the	database,	within	an
async	function:

						const	user	=	new	User({	

										firstName:	'John',	

										lastName:	'Smith',	

						})	

						await	user.save()	

Once	the	save	method	is	called,	the	pre	hook	is	executed	first.	After	the
document	is	saved,	the	post	hook	is	then	executed.	In	the	previous
example,	it	will	display	in	the	Terminal	output	the	following	text:

202

				New	user	created:	Smith	John

There	are	four	different	types	of	middleware	functions	in	Mongoose:
document	middleware,	model	middleware,	aggregate	middleware,	and
query	middleware.	All	of	them	are	defined	on	the	schema	level.	The
difference	is,	when	the	hooks	are	executed,	the	context	ofthis	refers	to
the	document,	model,	the	aggregation	object,	or	the	query	object.

All	types	of	middleware	support	pre	and	post	hooks

203

Getting	ready
In	this	recipe,	we	will	see	how	three	of	these	types	of	middleware
functions	work	in	Mongoose:

Document	middleware

Model	middleware

Query	middleware

First,	ensure	that	you	have	MongoDB	installed	and	it's	running.	As	an
alternative,	if	you	prefer,	a	MongoDB	DBaaS	instance	in	the	cloud	will
also	do.	Before	you	start,	create	a	new	package.json	file	with	the
following	code:

						{	

								"dependencies":	{	

										"mongoose":	"5.0.11"	

								}	

						}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install

204

How	to	do	it...
In	document	middleware	functions,	the	context	of	this	refers	to	the
document.	A	document	has	the	following	built-in	methods	and	you	can
define	hooks	for	them:

init:	This	is	called	internally,	immediately	after	a	document	is
returned	from	MongoDB.	Mongoose	uses	setters	for	marking
the	document	as	modified	or	which	fields	of	the	document	were
modified.	init	initializes	the	document	without	setters.

validate:	This	executes	built-in	and	custom	set	validation	rules
for	the	document.

save:	This	saves	the	document	in	the	database.

remove:	This	removes	the	document	from	the	database.

205

Document	middleware
functions
Create	pre	and	post	hooks	for	the	document	built-in	methods:

1.	 Create	a	new	file	named	1-document-middleware.js
2.	 Include	the	Mongoose	NPM	module	and	create	a	new

connection	to	your	MongoDB:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UserSchema	=	new	Schema({	

										firstName:	{	type:	String,	required:	true	},	

										lastName:	{	type:	String,	required:	true	},	

						})	

4.	 Add	a	pre	and	post	hook	for	the	init	document	method:

						UserSchema.pre('init',	async	function	preInit()	{	

										console.log('A	document	is	going	to	be	initialized.')	

						})	

						UserSchema.post('init',	async	function	postInit()	{	

										console.log('A	document	was	initialized.')	

206

						})	

5.	 Add	a	pre	and	post	hook	for	the	validate	document	method:

						UserSchema.pre('validate',	async	function	preValidate()	{	

										console.log('A	document	is	going	to	be	validated.')	

						})	

						UserSchema.post('validate',	async	function	postValidate()	{	

										console.log('All	validation	rules	were	executed.')	

						})	

6.	 Add	a	pre	and	post	hook	for	the	save	document	method:

						UserSchema.pre('save',	async	function	preSave()	{	

										console.log('Preparing	to	save	the	document')	

						})	

						UserSchema.post('save',	async	function	postSave()	{	

										console.log(`A	doc	was	saved	id=${this.id}`)	

						})	

7.	 Add	a	pre	and	post	hook	for	the	remove	document	method:

						UserSchema.pre('remove',	async	function	preRemove()	{	

										console.log(`Doc	with	id=${this.id}	will	be	removed`)	

						})	

						UserSchema.post('remove',	async	function	postRemove()	{	

										console.log(`Doc	with	id=${this.id}	was	removed`)	

						})	

8.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UserSchema)	

9.	 Once	a	new	connection	is	established,	create	a	document	and

207

perform	some	basic	operations	such	as	saving,	retrieving,	and
deleting	the	document:

						connection.once('connected',	async	()	=>	{	

										try	{	

														const	user	=	new	User({	

																		firstName:	'John',	

																		lastName:	'Smith',	

														})	

														await	user.save()	

														await	User.findById(user.id)	

														await	user.remove()	

														await	connection.close()	

										}	catch	(error)	{	

														await	connection.close()	

														console.dir(error.message,	{	colors:	true	})	

										}	

						})	

10.	 Save	the	file
11.	 Open	a	Terminal	and	run:

						node	document-middleware.js

12.	 On	the	terminal,	the	output	should	display:

						A	document	is	going	to	be	validated.	

						All	validation	rules	were	executed.	

						Preparing	to	save	the	document	

						A	doc	was	saved	id=[ID]	

						A	document	is	going	to	be	initialized.	

						A	document	was	initialized.	

						Doc	with	id=[ID]	will	be	removed	

						Doc	with	id=[ID]	was	removed	

When	you	save	a	document,	it	first	triggers	the	validation	hooks	that
ensure	that	the	fields	pass	the	rules	set	by	built-in	validation	rules	or
custom	rules.	In	your	code,	the	fields	are	marked	as	required.	Then	it

208

will	trigger	the	save	hooks.	After,	using	a	model	method	to	retrieve	the
recently	created	user	from	the	database,	once	the	document	is	retrieved,
it	triggers	the	init	hooks.	Finally,	removing	the	document	from	the
database	triggers	the	remove	hooks.

Within	the	hooks,	you	can	interact	with	the	document.	For	instance,	the
following	save	pre	hook	will	modify	the	fields	firstName	and	lastName	to
make	them	upper-cased	strings:

UserSchema.pre('save',	async	function	preSave()	{	

				this.firstName	=	this.firstName.toUpperCase()	

				this.lastName	=	this.lastName.toUpperCase()	

})	

The	same	way,	we	can	throw	an	error	within	the	hook	to	prevent	the
next	ones	from	being	executed.	For	instance:

UserSchema.pre('save',	async	function	preSave()	{	

				throw	new	Error('Doc	was	prevented	from	being	saved.')	

})	

Query	middleware	functions	are	defined	exactly	as	document
middleware	functions	are.	However,	the	context	of	this	doesn't	not	refer
to	the	document	but	instead	to	the	query	object.	Query	middleware
functions	are	only	supported	in	the	following	model	and	query
functions:

count:	Counts	the	number	of	document	that	match	a	specific
query	condition

find:	Returns	an	array	of	documents	that	match	a	specific	query
condition

findOne:	Return	a	document	that	matches	a	specific	query
condition

findOneAndRemove:	Similar	to	findOne.	However,	after	a	document	is
found,	it	is	removed

209

findOneAndUpdate:	Similar	to	findOne	but	once	a	document	matching
a	specific	query	condition	is	found,	the	document	can	also	be
updated

update:	Update	one	or	more	documents	that	match	a	certain
query	condition

210

Query	middleware
functions
Create	pre	and	post	hooks	for	query	built-in	methods:

1.	 Create	a	new	file	named	2-query-middleware.js
2.	 Include	the	Mongoose	NPM	module	and	create	a	new

connection	to	your	MongoDB:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UserSchema	=	new	Schema({	

										firstName:	{	type:	String,	required:	true	},	

										lastName:	{	type:	String,	required:	true	},	

						})	

4.	 Define	pre	and	post	hooks	for	the	count,	find,	findOne,	and	update
methods:

						UserSchema.pre('count',	async	function	preCount()	{	

										console.log(

														`Preparing	to	count	document	with	this	criteria:	

														${JSON.stringify(this._conditions)}`	

211

)	

						})	

						UserSchema.post('count',	async	function	postCount(count)	{	

										console.log(`Counted	${count}	documents	that	coincide`)	

						})	

						UserSchema.pre('find',	async	function	preFind()	{	

										console.log(

														`Preparing	to	find	all	documents	with	criteria:	

														${JSON.stringify(this._conditions)}`	

)	

						})	

						UserSchema.post('find',	async	function	postFind(docs)	{	

										console.log(`Found	${docs.length}	documents`)	

						})	

						UserSchema.pre('findOne',	async	function	prefOne()	{	

										console.log(

														`Preparing	to	find	one	document	with	criteria:	

														${JSON.stringify(this._conditions)}`	

)	

						})	

						UserSchema.post('findOne',	async	function	postfOne(doc)	{	

										console.log(`Found	1	document:`,	JSON.stringify(doc))	

						})	

						UserSchema.pre('update',	async	function	preUpdate()	{	

										console.log(

														`Preparing	to	update	all	documents	with	criteria:	

														${JSON.stringify(this._conditions)}`	

)	

						})	

						UserSchema.post('update',	async	function	postUpdate(r)	{	

										console.log(`${r.result.ok}	document(s)	were	updated`)	

						})	

5.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UserSchema)	

6.	 Once	the	connection	to	the	database	is	successfully	made,
create	a	document,	save	it,	and	use	the	methods	for	which	we
defined	hooks	for:

						connection.once('connected',	async	()	=>	{	

212

										try	{	

														const	user	=	new	User({	

																		firstName:	'John',	

																		lastName:	'Smith',	

														})	

														await	user.save()	

														await	User	

																		.where('firstName').equals('John')	

																		.update({	lastName:	'Anderson'	})	

														await	User	

																		.findOne()	

																		.select(['lastName'])	

																		.where('firstName').equals('John')	

														await	User	

																		.find()	

																		.where('firstName').equals('John')	

														await	User	

																		.where('firstName').equals('Neo')	

																		.count()	

														await	user.remove()	

										}	catch	(error)	{	

														console.dir(error,	{	colors:	true	})	

										}	finally	{	

														await	connection.close()	

										}	

						})	

7.	 Save	the	file
8.	 Open	a	Terminal	and	run:

						node	query-middleware.js

9.	 On	the	terminal,	the	output	should	display	something	similar	to:

						Preparing	to	update	all	documents	with	criteria:	

																{"firstName":"John"}	

						1	document(s)	were	updated	

						Preparing	to	find	one	document	with	criteria:	

																{"firstName":"John"}	

						Found	1	document:	{"_id":"[ID]","lastName":"Anderson"}	

						Preparing	to	find	all	documents	with	criteria:	

																{"firstName":"John"}	

						Found	1	documents	

213

						Preparing	to	count	document	with	this	criteria:	

																{"firstName":"Neo"}	

						Counted	0	documents	that	coincide	

Finally,	there	is	only	one	model	instance	method	that	supports	hooks:

insertMany:	This	validates	an	array	of	documents	and	saves	them
in	the	database	only	if	all	the	documents	in	the	array	passed
validation

As	you	probably	guessed,	a	model	middleware	function	is	also	defined
in	the	same	way	as	query	middleware	methods	and	document
middleware	methods	are.

214

Model	middleware
functions
Create	a	pre	and	post	hook	for	the	insertMany	model	instance	method:

1.	 Create	a	new	file	named	3-model-middleware.js
2.	 Include	the	Mongoose	NPM	module	and	create	a	new

connection	to	your	MongoDB:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema:

						const	UserSchema	=	new	Schema({	

										firstName:	{	type:	String,	required:	true	},	

										lastName:	{	type:	String,	required:	true	},	

						})	

4.	 Define	pre	and	post	hooks	for	the	insertMany	model	method:

						UserSchema.pre('insertMany',	async	function	prMany()	{	

										console.log('Preparing	docs...')	

						})	

						UserSchema.post('insertMany',	async	function	psMany(docs)	{	

										console.log('The	following	docs	were	created:n',	docs)	

215

						})	

5.	 Compile	the	schema	into	a	model:

						const	User	=	mongoose.model('User',	UserSchema)	

6.	 Once	a	connection	to	the	database	was	established,	use	the
insertMany	method	to	insert	two	documents	at	once:

						connection.once('connected',	async	()	=>	{	

										try	{	

														await	User.insertMany([

																		{	firstName:	'Leo',	lastName:	'Smith'	},	

																		{	firstName:	'Neo',	lastName:	'Jackson'	},	

])	

										}	catch	(error)	{	

														console.dir(error,	{	colors:	true	})	

										}	finally	{	

														await	connection.close()	

										}	

						})	

7.	 Save	the	file
8.	 Open	a	Terminal	and	run:

						node	query-middleware.js

9.	 On	the	Terminal,	the	output	should	display:

						Preparing	docs...	

						The	following	documents	were	created:	

						[{	firstName:	'Leo',	lastName:	'Smith',	_id:	[id]	},	

								{	firstName:	'Neo',	lastName:	'Jackson',	_id:	[id]	}]	

216

There's	more...
It's	useful	to	mark	the	fields	as	required	to	avoid	having	"null"	values
being	saved	in	the	database.	An	alternative	is	to	set	default	values	for
the	fields	that	are	not	explicitly	defined	in	the	creation	time	of	the
document.	For	instance:

						const	UserSchema	=	new	Schema({	

										name:	{	

														type:	string,	

														required:	true,	

														default:	'unknown',	

										}	

						})	

When	a	new	document	is	created,	if	no	path	or	property	name	is	assigned,
then	it	will	assign	the	default	value	defined	in	the	schema	type	option
default.

The	schema	type	default	option	can	also	be	a	function.	The	value	returned	by	calling	this
function	is	assigned	as	the	default	value.

Sub-documents	or	arrays	can	also	be	created	by	just	adding	brackets
when	defining	the	schema	type.	For	instance:

						const	WishBoxSchema	=	new	Schema({	

										wishes:	{	

														type:	[String],	

														required:	true,	

														default:	[

																		'To	be	a	snowman',	

																		'To	be	a	string',	

																		'To	be	an	example',	

],	

										},	

						})	

When	a	new	document	is	created,	it	will	expect	an	array	of	strings	in

217

the	wishes	property	or	path.	If	no	array	is	provided,	then	the	default
values	will	be	used	to	create	the	document.

218

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
NPM	Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

219

Writing	custom
validators	for
Mongoose's	schemas
Mongoose	has	several	built-in	validation	rules.	For	instance,	if	you
define	a	property	with	a	schema	type	of	string	and	set	it	as	required,	two
validation	rules	will	be	executed,	one	that	checks	for	the	property	to	be
a	valid	string	and	another	one	for	checking	that	the	property	is	not	null
or	undefined.

Custom	validation	rules	and	custom	error	validation	messages	can	also
be	defined	in	Mongoose	for	having	more	control	on	how	and	when
certain	properties	are	accepted	before	they	can	be	saved	in	the	database.

Validation	rules	are	defined	in	the	schema.	All	schema	types	have	a
built-in	validator	required	which	means	it	cannot	contain	undefined	or	null
values.	The	required	validator	can	be	of	type	boolean,	a	function,	or	an
array.	For	example:

						path:	{	type:	String,	required:	true	}	

						path:	{	type:	String,	required:	[true,	'Custom	error	message']	

}	

						path:	{	type:	String,	required:	()	=>	true	}	

String	schema	types	have	the	following	built-in	validators:

enum:	This	states	that	the	string	can	only	have	the	value	specified
in	the	enum	array.	For	instance:

						gender:	{	

220

						type:	SchemaTypes.String,	

						enum:	['male',	'female',	'other'],	

						}	

match:	This	uses	RegExp	to	test	the	value.	For	instance,	to	allow
values	that	start	with	www:

						website:	{	

						type:	SchemaTypes.String,	

						match:	/^www/,	

						}	

maxlength:	This	defines	the	maximum	length	that	a	string	can
have.

minlength:	This	defines	the	minimum	length	that	a	string	can
have.	For	instance,	to	allow	only	strings	between	5	and	20
characters:

						name:	{	

						type:	SchemaTypes.String,	

						minlength:	5,	

						maxlength:	20,	

						}	

Number	schema	types	have	two	built-in	validators:

min:	This	defines	the	minimum	value	that	a	number	can	have.

max:	This	defines	the	maximum	value	that	a	number	can	have.
For	instance,	to	allow	only	numbers	between	18	and	100:

						age:	{	

						type:	String,	

						min:	18,	

						max:	100,	

221

						}	

Undefined	values	pass	all	validators	without	error.	If	you	want	to	throw	an	error	if	a
value	is	undefined,	do	not	forget	to	use	the	required	validator	to	true

When	built-in	validators	sometimes	do	not	satisfy	your	requirements	or
you	wish	to	perform	complex	validation	rules,	you	have	an	option	or
property	called	validate.	This	accepts	an	object	that	has	two	properties,
validator	and	message,	that	allow	us	to	write	custom	validators:

						nickname:	{	

						type:	String,	

						validate:	{	

						validator:	function	validator(value)	{	

						return	/^[a-zA-Z-]$/.test(value)	

						},	

						message:	'{VALUE}	is	not	a	valid	nickname.',	

						},	

						}	

222

Getting	ready
In	this	recipe,	you	will	see	how	to	use	custom	validation	rules	to	ensure
that	a	certain	field	matches	or	fulfils	a	defined	rule.	First,	ensure	that
you	have	MongoDB	installed	and	it's	running.	As	an	alternative,	if	you
prefer,	a	MongoDB	DBaaS	instance	in	the	cloud	will	also	do.	Before
you	start,	create	a	new	package.json	file	with	the	following	code:

						{	

								"dependencies":	{	

										"mongoose":	"5.0.11"	

								}	

						}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install		

223

How	to	do	it...
Create	a	user	schema	and	ensure	that	all	user	names	are	of	type	string,
have	a	minimum	length	of	six	characters,	have	a	maximum	length	of	20
characters,	match	a	regular	expression,	and	are	required:

1.	 Create	a	new	file	named	custom-validation.js
2.	 Include	the	Mongoose	NPM	module	and	create	a	new

connection	to	the	database:

						const	mongoose	=	require('mongoose')	

						const	{	connection,	Schema	}	=	mongoose	

						mongoose.connect(

										'mongodb://localhost:27017/test'	

).catch(console.error)	

3.	 Define	a	schema	including	validation	rules	for	the	username	field:

						const	UserSchema	=	new	Schema({	

										username:	{	

														type:	String,	

														minlength:	6,	

														maxlength:	20,	

														required:	[true,	'user	is	required'],	

														validate:	{	

																		message:	'{VALUE}	is	not	a	valid	username',	

																		validator:	(val)	=>	/^[a-zA-Z]+$/.test(val),	

														},	

										},	

						})	

4.	 Compile	the	schema	into	a	model:

224

						const	User	=	mongoose.model('User',	UserSchema)	

5.	 Once	a	connection	with	the	database	is	established,	create	a
new	document	with	invalid	fields	and	use	the	validateSync
document	method	to	trigger	the	validation	built-in	and	custom
methods:

						connection.once('connected',	async	()	=>	{	

										try	{	

														const	user	=	new	User()	

														let	errors	=	null	

														//	username	field	is	not	defined	

														errors	=	user.validateSync()	

														console.dir(errors.errors['username'].message)	

														//	username	contains	less	than	6	characters	

														user.username	=	'Smith'	

														errors	=	user.validateSync()	

														console.dir(errors.errors['username'].message)	

														//	RegExp	matching	

														user.username	=	'Smith_9876'	

														errors	=	user.validateSync()	

														console.dir(errors.errors['username'].message)	

										}	catch	(error)	{	

														console.dir(error,	{	colors:	true	})	

										}	finally	{	

														await	connection.close()	

										}	

						})	

6.	 Save	the	file
7.	 Open	a	Terminal	and	run:

						node	custom-validation.js		

8.	 On	the	Terminal,	the	output	should	display:

225

						'user	is	required'	

						'Path	`username`	(`Smith`)	is	shorter	than	the	minimum	allowed													

							length	(6).'	

						'Smith_9876	is	not	a	valid	username'	

226

See	also
Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
NPM	Packages

Chapter	1,	Introduction	to	the	MERN	Stack,	section	Installing
MongoDB

227

Building	a	RESTful	API
to	manage	users	with
ExpressJS	and
Mongoose
In	this	recipe,	you	will	build	a	RESTful	API	that	will	allow	the	creation
of	new	users,	log	in,	display	user	information,	and	delete	a	user's
profile.	Furthermore,	you	will	learn	how	to	build	a	NodeJS	REPL	with
a	client	API	that	you	can	use	to	interact	with	your	server's	RESTful
API.

A	REPL	(Read-Eval-Print	Loop)	is	like	an	interactive	shell	where
you	can	execute	commands	one	after	another.	For	instance,	the	Node.js
REPL	can	be	opened	by	running	this	command	in	your	terminal:

node	-i	

Here,	the	-i	flag	stands	for	interactive.	Now,	you	can	execute	the
JavaScript	code	that	gets	evaluated	piece	by	piece	in	a	new	context.

228

Getting	ready
This	recipe	will	be	focused	on	showing	the	integration	of	Mongoose
with	ExpressJS	using	what	was	seen	in	previous	recipes.	First,	ensure
that	you	have	MongoDB	installed	and	it's	running.	As	an	alternative,	if
you	prefer,	a	MongoDB	DBaaS	instance	in	the	cloud	will	also	do.
Before	you	start,	create	a	new	package.json	file	with	the	following	code:

						{	

								"dependencies":	{	

										"body-parser":	"1.18.2",	

										"connect-mongo":	"2.0.1",	

										"express":	"4.16.3",	

										"express-session":	"1.15.6",	

										"mongoose":	"5.0.11",	

										"node-fetch":	"2.1.2"	

								}	

						}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running	this
code:

npm	install

229

How	to	do	it...
Firstly,	create	a	file	named	server.js	that	will	include	two	middleware
functions.	One	that	configures	a	session	and	the	other	that	makes	sure
that	there	is	a	connection	to	the	MongoDB	before	allowing	any	route	to
be	called.	Then,	we	mount	our	API	routes	to	a	specific	path:

1.	 Create	a	new	file	named	server.js
2.	 Include	the	required	libraries.	Then,	initialize	a	new	ExpressJS

application	and	create	a	connection	to	MongoDB:

						const	mongoose	=	require('mongoose')	

						const	express	=	require('express')	

						const	session	=	require('express-session')	

						const	bodyParser	=	require('body-parser')	

						const	MongoStore	=	require('connect-mongo')(session)	

						const	api	=	require('./api/controller')	

						const	app	=	express()	

						const	db	=	mongoose.connect(

										'mongodb://localhost:27017/test'	

).then(conn	=>	conn).catch(console.error)	

3.	 Use	the	body-parser	middleware	to	parse	the	request	body	as
JSON:

						app.use(bodyParser.json())	

4.	 Define	an	ExpressJS	middleware	function	that	will	ensure	your
web	application	is	connected	to	MongoDB	first	before	allowing
next	route	handlers	to	be	executed:

230

						app.use((request,	response,	next)	=>	{

								Promise.resolve(db).then(

								(connection,	err)	=>	(

												typeof	connection	!==	'undefined'

												?	next()

												:	next(new	Error('MongoError'))

)

)

						})

5.	 Configure	express-session	middleware	to	store	sessions	in	the
Mongo	database	instead	of	storing	in	memory:

						app.use(session({	

										secret:	'MERN	Cookbook	Secrets',	

										resave:	false,	

										saveUninitialized:	true,	

										store:	new	MongoStore({	

														collection:	'sessions',	

														mongooseConnection:	mongoose.connection,	

										}),	

						}))	

6.	 Mount	the	API	controller	to	the	"/api"	route:

						app.use('/users',	api)	

7.	 Listen	on	port	1773	for	new	connections:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

8.	 Save	the	file

231

Then,	create	a	new	directory	named	api.	Next,	create	the	model	or
business	logic	of	your	application.	Define	a	schema	for	users	with	static
and	instance	methods	that	will	allow	a	user	to	signup,	login,	logout,	get
profile	data,	change	their	password,	and	remove	their	profile:

1.	 Create	a	new	file	named	model.js	in	the	api	directory
2.	 Include	the	Mongoose	NPM	module	and	also	the	crypto	NodeJS

module	that	will	be	used	to	generate	a	hash	for	the	user
passwords:

						const	{	connection,	Schema	}	=	require('mongoose')	

						const	crypto	=	require('crypto')	

3.	 Define	the	schema:

						const	UserSchema	=	new	Schema({	

										username:	{	

														type:	String,	

														minlength:	4,	

														maxlength:	20,	

														required:	[true,	'username	field	is	required.'],	

														validate:	{	

																		validator:	function	(value)	{	

																						return	/^[a-zA-Z]+$/.test(value)	

																		},	

																		message:	'{VALUE}	is	not	a	valid	username.',	

														},	

										},	

										password:	String,	

						})	

4.	 Define	a	static	model	method	for	login:

						UserSchema.static('login',	async	function(usr,	pwd)	{	

										const	hash	=	crypto.createHash('sha256')	

														.update(String(pwd))	

										const	user	=	await	this.findOne()	

232

														.where('username').equals(usr)	

														.where('password').equals(hash.digest('hex'))	

										if	(!user)	throw	new	Error('Incorrect	credentials.')	

										delete	user.password	

										return	user	

						})	

5.	 Define	a	static	model	method	for	signup:

						UserSchema.static('signup',	async	function(usr,	pwd)	{	

										if	(pwd.length	<	6)	{	

														throw	new	Error('Pwd	must	have	more	than	6	chars')	

										}	

										const	hash	=	crypto.createHash('sha256').update(pwd)	

										const	exist	=	await	this.findOne()	

														.where('username')	

														.equals(usr)	

										if	(exist)	throw	new	Error('Username	already	exists.')	

										const	user	=	this.create({	

														username:	usr,	

														password:	hash.digest('hex'),	

										})	

										return	user	

						})	

6.	 Define	a	document	instance	method	for	changePass:

						UserSchema.method('changePass',	async	function(pwd)	{	

										if	(pwd.length	<	6)	{	

														throw	new	Error('Pwd	must	have	more	than	6	chars')	

										}	

										const	hash	=	crypto.createHash('sha256').update(pwd)	

										this.password	=	hash.digest('hex')	

										return	this.save()	

						})	

7.	 Compile	the	Mongoose	schema	into	a	model	and	export	it:

						module.exports	=	connection.model('User',	UserSchema)	

233

8.	 Save	the	file

Finally,	define	a	controller	that	will	transform	the	request	body	to
actions	that	our	model	can	understand.	Then	export	it	as	an	ExpressJS
router	that	contains	all	API	paths:

1.	 Create	a	new	file	named	controller.js	in	the	api	folder
2.	 Import	model.js	and	initialize	a	new	ExpressJS	Route:

						const	express	=	require('express')	

						const	User	=	require('./model')	

						const	api	=	express.Router()	

3.	 Define	a	request	handler	to	check	if	a	user	is	logged	in	and
another	request	handler	to	check	if	the	user	is	not	logged	in:

						const	isLogged	=	({	session	},	res,	next)	=>	{	

										if	(!session.user)	res.status(403).json({	

														status:	'You	are	not	logged	in!',	

										})	

										else	next()	

						}	

						const	isNotLogged	=	({	session	},	res,	next)	=>	{	

										if	(session.user)	res.status(403).json({	

														status:	'You	are	logged	in	already!',	

										})	

										else	next()	

						}	

4.	 Define	a	post	request	method	to	handle	requests	to	"/login"
endpoint:

						api.post('/login',	isNotLogged,	async	(req,	res)	=>	{	

										try	{	

														const	{	session,	body	}	=	req	

								const	{	username,	password	}	=	body	

234

														const	user	=	await	User.login(username,	password)	

														session.user	=	{	

																		_id:	user._id,	

																		username:	user.username,	

														}	

														session.save(()	=>	{	

																		res.status(200).json({	status:	'Welcome!'})	

														})	

										}	catch	(error)	{	

														res.status(403).json({	error:	error.message	})	

										}	

						})	

5.	 Define	a	post	request	method	to	handle	requests	to	"/logout"
endpoint:

						api.post('/logout',	isLogged,	(req,	res)	=>	{	

										req.session.destroy()	

										res.status(200).send({	status:	'Bye	bye!'	})	

						})	

6.	 Define	a	post	request	method	to	handle	requests	to	"/signup"
endpoint:

						api.post('/signup',	async	(req,	res)	=>	{	

										try	{	

														const	{	session,	body	}	=	req	

														const	{	username,	password	}	=	body	

														const	user	=	await	User.signup(username,	password)	

														res.status(201).json({	status:	'Created!'})	

										}	catch	(error)	{	

														res.status(403).json({	error:	error.message	})	

										}	

						})	

7.	 Define	a	get	request	method	to	handle	requests	to	"/profile"
endpoint:

235

						api.get('/profile',	isLogged,	(req,	res)	=>	{	

										const	{	user	}	=	req.session	

										res.status(200).json({	user	})	

						})	

8.	 Define	a	put	request	method	to	handle	requests	to	"/changepass"
endpoint:

						api.put('/changepass',	isLogged,	async	(req,	res)	=>	{	

										try	{	

														const	{	session,	body	}	=	req	

														const	{	password	}	=	body	

														const	{	_id	}	=	session.user	

														const	user	=	await	User.findOne({	_id	})	

														if	(user)	{	

																		await	user.changePass(password)	

																		res.status(200).json({	status:	'Pwd	changed'	})	

														}	else	{	

																		res.status(403).json({	status:	user	})	

														}	

										}	catch	(error)	{	

														res.status(403).json({	error:	error.message	})	

										}	

						})	

9.	 Define	a	delete	request	method	to	handle	requests	to	"/delete"
endpoint:

						api.delete('/delete',	isLogged,	async	(req,	res)	=>	{	

										try	{	

														const	{	_id	}	=	req.session.user	

														const	user	=	await	User.findOne({	_id	})	

														await	user.remove()	

														req.session.destroy((err)	=>	{	

																		if	(err)	throw	new	Error(err)	

																		res.status(200).json({	status:	'Deleted!'})	

														})	

										}	catch	(error)	{	

														res.status(403).json({	error:	error.message	})	

										}	

						})	

236

10.	 Export	the	route:

						module.exports	=	api	

11.	 Save	the	file

237

Let's	test	it...
You	have	built	a	RESTful	API	that	allows	users	to	subscribe	or	sign	up,
log	in,	log	out,	get	their	profile,	and	delete	their	profile.	These	actions
can	be	performed	by	making	HTTP	requests	to	the	server.	We	will	build
now	a	small	NodeJS	REPL	and	client	API	that	could	allow	you	to
interact	with	your	RESTful	API	server	with	plain	JavaScript	functions:

1.	 Move	to	the	root	of	your	project	directory	and	create	a	new	file
named	client-repl.js.

2.	 Include	the	node-fetch	NPM	module	that	will	allow	making
HTTP	request	to	the	server.	Include	as	well,	the	repl	and	vm
Node.js	modules	that	will	allow	you	to	create	an	interactive
Node.js	REPL:

						const	repl	=	require('repl')	

						const	util	=	require('util')	

						const	vm	=	require('vm')	

						const	fetch	=	require('node-fetch')	

						const	{	Headers	}	=	fetch	

3.	 Define	a	variable	that	will	later	contain	the	session	ID	from	the
cookie	once	the	user	is	logged-in.	The	cookie	will	be	used	to
allow	the	server	recognize	the	logged	in	user	for	actions	such	as
getting	information	about	your	profile	or	changing	password:

						let	cookie	=	null	

4.	 Define	a	helper	function	named	query	that	will	allow	to	make

238

HTTP	requests	to	the	server.	The	credentials	options,	allows	to
send	and	receive	cookies	from	and	to	the	server.	We	define	the
headers	that	will	tell	the	server	the	content	type	of	the	request
body	that	will	be	sent	as	JSON	content:

						const	query	=	(path,	ops)	=>	{	

										return	fetch(`http://localhost:1337/users/${path}`,	{	

														method:	ops.method,	

														body:	ops.body,	

														credentials:	'include',	

														body:	JSON.stringify(ops.body),	

														headers:	new	Headers({	

																		...(ops.headers	||	{}),	

																		cookie,	

																		Accept:	'application/json',	

																		'Content-Type':	'application/json',	

														}),	

										}).then(async	(r)	=>	{	

														cookie	=	r.headers.get('set-cookie')	||	cookie	

														return	{	

																		data:	await	r.json(),	

																		status:	r.status,	

														}	

										}).catch(error	=>	error)	

						}	

5.	 Define	a	method	that	will	allow	users	to	sign	up:

						const	signup	=	(username,	password)	=>	query('/signup',	{	

										method:	'POST',	

										body:	{	username,	password	},	

						})	

6.	 Define	a	method	that	will	allow	users	to	log	in:

						const	login	=	(username,	password)	=>	query('/login',	{	

										method:	'POST',	

										body:	{	username,	password	},	

						})	

239

7.	 Define	a	method	that	will	allow	users	to	log	out:

						const	logout	=	()	=>	query('/logout',	{	

										method:	'POST',	

						})	

8.	 Define	a	method	that	will	allow	users	to	get	their	profile:

						const	getProfile	=	()	=>	query('/profile',	{	

										method:	'GET',	

						})	

9.	 Define	a	method	that	will	allow	users	to	change	their	password:

						const	changePassword	=	(password)	=>	query('/changepass',	{	

										method:	'PUT',	

										body:	{	password	},	

						})	

10.	 Define	a	method	that	will	allow	users	to	delete	their	profile:

						const	deleteProfile	=	()	=>	query('/delete',	{	

										method:	'DELETE',	

						})	

11.	 Use	the	start	method	from	the	REPL	exported	object	to	start	a
new	REPL	server.	We	will	specify	the	eval	method	to	execute
JavaScript	code	using	the	VM	module,	then,	if	a	Promise	is
returned,	it	will	wait	for	the	Promise	to	be	resolved	before
allowing	the	user	to	input	more	commands	or	type	more

240

JavaScript	code	in	the	REPL.	We	will	also	specify	also	the
writer	method	that	will	pretty-print	the	result	of	calling	the
previously	defined	methods:

						const	replServer	=	repl.start({	

										prompt:	'>	',	

										ignoreUndefined:	true,	

										async	eval(cmd,	context,	filename,	callback)	{	

														const	script	=	new	vm.Script(cmd)	

														const	is_raw	=	process.stdin.isRaw	

														process.stdin.setRawMode(false)	

														try	{	

																		const	res	=	await	Promise.resolve(

																						script.runInContext(context,	{	

																										displayErrors:	false,	

																										breakOnSigint:	true,	

																						})	

)	

																		callback(null,	res)	

														}	catch	(error)	{	

																		callback(error)	

														}	finally	{	

																		process.stdin.setRawMode(is_raw)	

														}	

										},	

										writer(output)	{	

														return	util.inspect(output,	{	

																		breakLength:	process.stdout.columns,	

																		colors:	true,	

																		compact:	false,	

														})	

										}	

						})	

12.	 Add	the	previously	defined	methods	to	the	context	of	the	REPL
server	where	the	JavaScript	code	will	be	executed:

						replServer.context.api	=	{	

										signup,	

										login,	

										logout,	

										getProfile,	

										changePassword,	

241

										deleteProfile,	

						}	

13.	 Save	the	file

Now	you	can	run	on	a	terminal	your	RESTful	API	server:

node	server.js	

And	in	a	different	terminal,	run	the	NodeJS	REPL	application	that	you
just	created:

node	client-repl.js

In	the	REPL,	you	can	execute	JavaScript	code	and	you	have	also	access
to	the	exported	methods.	For	instance,	you	can	execute	the	following
JavaScript	code	line	by	line	in	your	REPL:

						api.signup('John',	'zxcvbnm')	

						api.login('John',	'zxcvbnm')	

						api.getProfile()	

						api.changePassword('newPwd')	

						api.logout()	

						api.login('John',	'incorrectPwd')	

242

How	it	works...
Your	RESTful	API	server	will	accept	requests	for	the	following	paths:

POST/users/login:	If	a	username	does	not	exist	in	the	users
collection	in	MongoDB,	an	error	message	is	sent	to	the	client.
Otherwise,	it	returns	a	welcome	message.

POST/users/logout:	This	destroys	the	session	ID.

POST/users/signup:	This	creates	a	new	username	with	the	defined
password.	However,	an	error	will	be	sent	to	the	client	if	the
username	or	password	does	not	pass	the	validation.	It	will	also
send	an	error	message	to	the	client	when	the	username	already
exists.

GET/users/profile:	If	the	user	is	logged	in,	the	user	information	is
sent	to	the	client.	Otherwise,	an	error	message	is	sent	to	the
client.

PUT/users/changepass/:	This	will	change	the	current	logged-in
user's	password.	However,	if	the	user	is	not	logged-in,	an	error
message	is	sent	to	the	client.

DELETE/users/delete:	This	will	remove	a	logged-in	user's	profile
from	the	collection	users	in	MongoDB.	The	session	will	be
destroyed	and	a	confirmation	message	is	sent	to	the	client.	If
the	user	is	not	logged-in,	an	error	message	is	sent	to	the	client

243

See	also
Chapter	1,	Introduction	to	MERN	Stack,	section	Installing	NPM
Packages

Chapter	1,	Introduction	to	MERN	Stack,	section	Installing
MongoDB

244

Real-Time
Communication	with
Socket.IO	and
ExpressJS
In	this	chapter,	we	will	cover	the	following	recipes:

Understanding	NodeJS	events

Understanding	Socket.IO	events

Working	with	Socket.IO	namespaces

Defining	and	joining	to	Socket.IO	rooms

Writing	middleware	for	Socket.IO

Integrating	Socket.IO	with	ExpressJS

Using	ExpressJS	middleware	in	Socket.IO

245

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git
repository	of	this	book.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter04

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/xfyDBn

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter04
https://goo.gl/xfyDBn

246

Introduction
Modern	web	applications	usually	require	real-time	communication
where	data	is	continuously	flowing	from	client	to	server	and	vice	versa
with	(almost)	no	delay.

The	HTML5	WebSocket	Protocol	was	created	to	fulfill	this
requirement.	WebSocket	uses	a	single	TCP	connection	that	is	kept	open
even	when	the	server	or	client	is	not	sending	any	data.	That	means,
while	a	connection	between	the	client	and	the	server	exists,	data	can	be
sent	at	any	time	without	having	to	open	a	new	connection	to	the	server.

Real-time	communication	has	several	applications	from	building	chat
applications	to	multi-user	games,	where	the	response	time	is	really
important.

In	this	chapter,	we	will	focus	on	learning	how	to	build	a	real-time	web
application	using	Socket.IO	(https://socket.io)	and	understanding	the
Node.js	event-driven	architecture.

Socket.IO	is	one	of	the	most	used	libraries	for	implementing	real-time
communication.	Socket.IO	uses	WebSocket	whenever	possible	but
falls-back	to	other	methods	when	WebSocket	is	not	supported	on	a
specific	web	browser.	Because	you	probably	want	to	make	your
application	accessible	from	any	web	browser,	having	to	work	directly
with	WebSocket	may	not	seem	like	a	good	idea.

https://socket.io

247

Understanding	Node.js
events
Node.js	has	an	event-driven	architecture.	Most	of	Node.js'	core	API	is
built	around	EventEmitter.	This	is	a	Node.js	module	that	allows	listeners
to	subscribe	to	certain	named	events	that	can	be	triggered	later	by	an
emitter.

You	can	define	your	own	event	emitter	easily	by	just	including	the
events	Node.js	module	and	creating	a	new	instance	of	EventEmitter:

const	EventEmitter	=	require('events')	

const	emitter	=	new	EventEmitter()	

emitter.on('welcome',	()	=>	{	

				console.log('Welcome!')	

})	

Then,	you	can	trigger	the	welcome	event	by	using	the	emit	method:

emitter.emit('welcome')	

It	is	actually,	pretty	simple.	One	of	the	advantages	is	that	you	can
subscribe	multiple	listeners	to	the	same	event,	and	they	will	get
triggered	when	the	emit	method	is	used:

emitter.on('welcome',	()	=>	{	

				console.log('Welcome')	

})	

emitter.on('welcome',	()	=>	{	

				console.log('There!')	

})	

emitter.emit('welcome')	

248

The	EventEmitter	API	provides	several	helpful	methods	that	give	you
more	control	to	handle	events.	Check	the	official	Node.js
documentation	to	see	all	information	about	the	API:
https://nodejs.org/api/events.html.

https://nodejs.org/api/events.html

249

Getting	ready
In	this	recipe,	you	will	create	a	class	that	will	extend	EventEmitter,	and
which	will	contain	its	own	instance	methods	to	trigger	listeners
attached	to	a	specific	event.	First,	create	a	new	project	by	opening	a
Terminal	and	running	the	following	line:

npm	init

250

How	to	do	it...
Create	a	class	that	extends	EventEmitter	and	define	two	instance	methods
called	start	and	stop.	When	the	start	method	is	called,	it	will	trigger	all
listeners	attached	to	the	start	event.	It	will	keep	the	starting	time	using
process.hrtime.	Then,	when	the	stop	method	is	called,	it	will	trigger	all
listeners	attached	to	the	stop	event	passing	as	an	argument	the	difference
in	time	since	the	start	method	was	called:

1.	 Create	a	new	file	named	timer.js
2.	 Include	the	events	NodeJS	module:

						const	EventEmitter	=	require('events')	

3.	 Define	two	constants	that	we	will	use	to	convert	the	returned
value	of	process.hrtime	from	seconds	to	nanoseconds	and	then	to
milliseconds:

						const	NS_PER_SEC	=	1e9	

						const	NS_PER_MS	=	1e6	

4.	 Define	a	class	named	Timer	with	two	instance	methods:

						class	Timer	extends	EventEmitter	{	

										start()	{	

														this.startTime	=	process.hrtime()	

														this.emit('start')	

										}	

										stop()	{	

														const	diff	=	process.hrtime(this.startTime)	

251

														this.emit(

																		'stop',	

																		(diff[0]	*	NS_PER_SEC	+	diff[1])	/	NS_PER_MS,	

)	

										}	

						}	

5.	 Create	a	new	instance	of	the	previously	defined	class:

						const	tasks	=	new	Timer()	

6.	 Attach	an	event	listener	to	the	start	event	that	will	have	a	loop
that	will	perform	multiplications.	Afterwards,	it	will	call	the
stop	method:

						tasks.on('start',	()	=>	{	

										let	res	=	1	

										for	(let	i	=	1;	i	<	100000;	i++)	{	

														res	*=	i	

										}	

										tasks.stop()	

						})	

7.	 Attach	an	event	listener	to	the	stop	event	that	will	print	the	time
it	took	for	the	event	start	to	execute	all	its	attached	listeners:

						tasks.on('stop',	(time)	=>	{	

										console.log(`Task	completed	in	${time}ms`)	

						})	

8.	 Call	the	start	method	to	trigger	all	start	event	listeners:

						tasks.start()	

252

9.	 Save	the	file
10.	 Open	a	new	Terminal	and	run:

						node	timer.js

253

How	it	works...
When	the	start	method	is	executed,	it	keeps	the	starting	time	using
process.hrtime,	which	returns	the	current	high-resolution	real	time	in	an
array	of	two	items,	where	the	first	item	is	a	number	that	represents
seconds	while	the	second	item	is	another	number	that	represents
nanoseconds.	Then,	it	triggers	all	event	listeners	attached	to	the	start
event.

On	the	other	side,	when	the	stop	method	is	executed,	it	uses	the	result	of
previously	calling	process.hrtime	as	an	argument	to	the	same	function,
which	returns	the	difference	in	time.	This	is	useful	to	measure	the	time
from	when	the	start	method	was	called	until	the	time	when	the	stop
method	was	called.

254

There's	more...
A	common	mistake	is	to	assume	that	events	are	called	asynchronously.
It	is	true	that	defined	events	can	be	called	at	any	time.	However,	they
are	still	executed	synchronously.	Take	the	following	example:

const	EventEmitter	=	require('events')	

const	events	=	new	EventEmitter()	

events.on('print',	()	=>	console.log('1'))	

events.on('print',	()	=>	console.log('2'))	

events.on('print',	()	=>	console.log('3'))	

events.emit('print')	

The	outputs	for	the	preceding	code	will	be	shown	as	follows:

1	

2	

3	

If	you	have	a	loop	running	inside	one	of	your	events,	the	next	event
won't	get	called	until	the	previous	one	finishes	executing.

Events	can	be	made	asynchronous	by	simply	adding	an	async	function	as
an	event	listener.	By	doing	so,	every	function	will	still	be	called	in
order	from	the	first	listener	defined	to	the	last.	However,	the	emitter
won't	wait	for	the	first	listener	to	finish	its	execution	to	call	the	next
listener.	That	means	you	cannot	guarantee	that	the	output	will	always
be	in	the	same	order,	for	instance:

events.on('print',	()	=>	console.log('1'))	

events.on('print',	async	()	=>	console.log(

				await	Promise.resolve('2'))	

)	

events.on('print',	()	=>	console.log('3'))	

events.emit('print')		

255

The	outputs	for	the	preceding	code	will	be	shown	as	follows:

1	

3	

2	

Asynchronous	functions	allow	us	to	write	non-blocking	applications.	If
implemented	correctly,	you	won't	run	into	problems	like	this	above.

EventEmitter	instances	have	a	method	called	listeners	which	when
executed,	providing	an	event	name	as	an	argument,	returns	an	array	of
the	attached	listeners	for	that	specific	event.	We	can	use	this	method	in
a	way	to	allow	async	functions	to	be	executed	in	the	order	they	were
attached,	for	instance:

const	EventEmitter	=	require('events')	

class	MyEvents	extends	EventEmitter	{	

				start()	{	

								return	this.listeners('logme').reduce(

												(promise,	nextEvt)	=>	promise.then(nextEvt),	

												Promise.resolve(),	

)	

				}	

}	

const	event	=	new	MyEvents()	

event.on('logme',	()	=>	console.log(1))	

event.on('logme',	async	()	=>	console.log(

				await	Promise.resolve(2)	

))	

event.on('logme',	()	=>	console.log(3))	

event.start()	

This	will	execute	and	display	output	in	the	order	they	were	attached:

1	

2	

3	

256

Understanding
Socket.IO	events
Socket.IO	is	an	event-driven	module	or	library,	and,	as	you	probably
guessed,	is	based	on	EventEmitter.	Everything	in	Socket.IO	works	with
events.	An	event	is	triggered	when	a	new	connection	is	made	to	the
Socket.IO	server	and	an	event	can	be	emitted	to	send	data	to	the	client.

The	Socket.IO	server	API	differs	from	the	Socket.IO	client	API.
However,	both	work	with	events	to	send	data	from	client	to	server	and
vice	versa.

257

The	Socket.IO	server
events
Socket.IO	uses	a	single	TCP	connection	to	a	single	path.	That	means,
by	default,	the	connection	is	made	to	the	URL
http[s]://host:port/socket.io.	However,	within	Socket.IO,	it	allows	you	to
define	namespaces.	That	means,	different	end-points	but	the
connection	will	still	remain	a	single	URL.

By	default,	Socket.IO	Server	uses	the	"/"	or	root	namespace

You	can,	of	course,	define	multiple	instances	and	listen	to	different
URLs	as	well.	However,	we	will	assume,	for	the	purpose	of	this	recipe,
that	only	one	connection	is	created.

The	Socket.IO	namespace	has	the	following	events	that	your
application	can	subscribe	to:

connect	or	connection:	When	a	new	connection	is	made,	this	event
is	fired.	It	provides	a	socket	object	to	the	listener	as	the	first
parameter	that	represents	the	new	connection	with	the	client

						io.on('connection',	(socket)	=>	{	

										console.log('A	new	client	is	connected')	

						})	

						//	Which	is	the	same	as:

							io.of('/').on('connection',	(socket)	=>	{	

										console.log('A	new	client	is	connected')	

						})	

The	Socket.IO	socket	object	has	the	following	events:

258

disconnecting:	This	event	is	emitted	when	the	client	is	going	to	be
disconnected	from	the	server.	It	provides	to	the	listener	a
parameter	that	specifies	the	reason	for	the	disconnection

						socket.on('disconnecting',	(reason)	=>	{	

										console.log('Disconnecting	because',	reason)	

						})	

disconnected:	Similar	to	the	disconnecting	event.	However,	this
event	is	fired	after	the	client	has	been	disconnected	from	the
server:

						socket.on('disconnect',	(reason)	=>	{	

										console.log('Disconnected	because',	reason)	

						})	

error:	This	event	is	emitted	when	an	error	occurs	within	events

						socket.on('error',	(error)	=>	{	

										console.log('Oh	no!',	error.message)	

						})	

[eventName]:	A	user-defined	event	that	will	get	fired	when	the
client	emits	an	event	with	the	same	name.	The	client	can	emit
an	event	providing	data	in	the	arguments.	On	the	server,	the
event	will	be	fired	and	it	will	receive	the	data	sent	by	the	client

259

Socket.IO	client	events
A	client	doesn't	necessarily	need	to	be	a	web	browser.	We	could	write	a
Node.js	Socket.IO	client	application	as	well.

The	Socket.IO	client	events	are	extensive	and	give	a	lot	of	control	over
your	application:

connect:	This	event	gets	fired	when	there	is	a	successful
connection	to	the	server

						clientSocket.on('connect',	()	=>	{	

										console.log('Successfully	connected	to	server')	

						})	

connect_error:	This	event	is	emitted	when	there	is	an	error	when
trying	to	connect	or	reconnect	to	the	server

						clientSocket.on('connect_error',	(error)	=>	{	

										console.log('Connection	error:',	error)	

						})	

connect_timeout:	By	default,	the	timeout	set	before	a	connect_error
and	connect_timeout	is	emitted	is	20	seconds.	After	this,	the
Socket.IO	client	may	try	to	reconnect	to	the	server	once	again:

						clientSocket.on('connect_timeout',	(timeout)	=>	{	

										console.log('Connect	attempt	timed	out	after',	timeout)	

						})	

260

disconnect:	This	event	is	fired	when	the	client	is	disconnected
from	the	server.	An	argument	is	provided	specifying	the	reason
of	the	disconnection:

						clientSocket.on('disconnect',	(reason)	=>	{	

										console.log('Disconnected	because',	reason)	

						})	

reconnect:	Fired	after	a	successful	reconnection	attempt.	An
argument	is	provided	that	specifies	how	many	attempts
happened	before	the	connection	was	successful:

						clientSocket.on('reconnect',	(n)	=>	{	

										console.log('Reconnected	after',	n,	'attempt(s)')	

						})	

reconnect_attempt	or	reconnecting:	This	event	is	emitted	when
trying	to	reconnect	to	the	server.	An	argument	is	provided
specifying	the	number	of	current	attempts	to	connect	to	the
server:

						clientSocket.on('reconnect_attempt',	(n)	=>	{	

										console.log('Trying	to	reconnect	again',	n,	'time(s)')	

						})		

reconnect_error:	Similar	to	the	connect_error	event.	However,	it
gets	fired	only	if	there	is	an	error	when	trying	to	reconnect	to
the	server:

						clientSocket.on('reconnect_error',	(error)	=>	{	

261

										console.log('Oh	no,	couldn't	reconnect!',	error)	

						})		

reconnect_failed:	By	the	default,	the	maximum	number	of
attempts	is	set	to	Infinity.	That	means,	it	is	unlikely	that	this
event	will	ever	get	fired.	However,	we	can	specify	an	option	to
limit	the	maximum	number	of	connection	attempts.	Let's	see
that	later:

						clientSocket.on('reconnect_failed',	(n)	=>	{	

				console.log('Couldn'nt	reconnected	after',	n,	'times')	

						})	

ping:	In	short,	this	event	gets	fired	to	check	if	the	connection
with	the	server	is	still	alive:

						clientSocket.on('ping',	()	=>	{	

										console.log('Checking	if	server	is	alive')	

						})	

pong:	Fired	when	a	response	is	received	from	the	server	after	the
event	ping	is	fired.	An	argument	is	provided	specifying	the
latency	or	response	time:

						clientSocket.on('pong',	(latency)	=>	{	

										console.log('Server	responded	after',	latency,	'ms')	

						})	

error:	This	event	is	fired	when	an	error	occurs	within	events:

						clientSocket.on('error',	(error)	=>	{	

										console.log('Oh	no!',	error.message)	

262

						})	

[eventName]:	A	user-defined	event	that	gets	fired	when	the	event
is	emitted	in	the	server.	The	arguments	provided	by	the	server
will	be	received	by	the	client.

263

Getting	ready
In	this	recipe,	you	will	build	a	Socket.IO	server	and	a	Socket.IO	client
using	what	you	have	just	learned	about	events.	Before	you	start,	create
a	new	package.json	file	with	the	following	content:

{	

		"dependencies":	{	

				"socket.io":	"2.1.0"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install	

264

How	to	do	it...
A	Socket.IO	server	will	be	built	to	respond	to	a	single	event	named	time.
When	the	event	is	fired,	it	will	get	the	server's	current	time	and	emit
another	event	named	"got	time?"	providing	two	arguments,	the	current
time	and	a	counter	that	specifies	how	many	times	a	request	was	made.

1.	 Create	a	new	file	named	simple-io-server.js

2.	 Include	the	Socket.IO	module	and	initialize	a	new	server:

						const	io	=	require('socket.io')()	

3.	 Define	the	URL	path	where	connections	will	be	made:

						io.path('/socket.io')	

4.	 Use	the	root	or	"/"	namespace:

						const	root	=	io.of('/')	

5.	 When	a	new	connection	is	made,	initialize	a	counter	variable	to
0.	Then,	add	a	new	listener	to	the	time	event	that	will	increase
the	counter	by	one,	every	time	there	is	a	new	request,	and	emit
the	"got	time?"	event	that	will	be	later	defined	on	the	client	side:

265

						root.on('connection',	socket	=>	{	

										let	counter	=	0	

										socket.on('time',	()	=>	{	

														const	currentTime	=	new	Date().toTimeString()	

														counter	+=	1	

														socket.emit('got	time?',	currentTime,	counter)	

										})	

						})	

6.	 Listen	on	port	1337	for	new	connections:

						io.listen(1337)	

7.	 Save	the	file

Next,	build	a	Socket.IO	client	that	will	connect	to	our	server:

1.	 Create	a	new	file	named	simple-io-client.js
2.	 Include	the	Socket.IO	client	module:

						const	io	=	require('socket.io-client')	

3.	 Initialize	a	new	Socket.IO	client	providing	the	server	URL	and
an	options	object	where	we	will	define	the	path	used	in	the
URL	where	the	connections	will	be	made:

						const	clientSocket	=	io('http://localhost:1337',	{	

										path:	'/socket.io',	

						})	

4.	 Add	an	event	listener	to	the	connect	event.	Then,	when	a
connection	is	made,	using	a	for	loop,	emit	the	time	event	5

266

times:

						clientSocket.on('connect',	()	=>	{	

										for	(let	i	=	1;	i	<=	5;	i++)	{	

														clientSocket.emit('time')	

										}	

						})	

5.	 Add	an	event	listener	to	the	"got	time?"	event	that	will	expect	to
receive	two	arguments	the	time	and	a	counter	that	specifies
how	many	requests	were	made	to	the	server,	then	print	on	the
console:

						clientSocket.on('got	time?',	(time,	counter)	=>	{	

										console.log(counter,	time)	

						})	

6.	 Save	the	file
7.	 Open	a	Terminal	and	run	first	the	Socket.IO	server:

				node	simple-io-server.js

8.	 Open	another	terminal	and	run	the	Socket.IO	client:

				node	simple-io-client.js

267

How	it	works...
Everything	works	with	events.	Socket.IO	allows	events	to	be	defined	in
the	server	side	that	the	client	can	emit.	On	the	other	side,	it	also	allows
to	define	events	in	the	client	side	that	the	server	can	emit.

When	a	user-defined	event	is	emitted	by	the	server	side,	the	data	is	sent
to	the	client.	The	Socket.IO	client	checks	whether	there	is	a	listener	for
that	event	first.	Then,	if	there	is	a	listener,	it	will	get	triggered.	The
same	thing	happens	the	other	way	around	when	a	user-defined	event	is
emitted	by	the	client	side:

1.	 An	event	listener	time	was	added	in	our	Socket.IO	server's
socket	object	which	can	be	emitted	by	the	client	side

2.	 An	event	listener	"got	time?"	was	added	in	our	Socket.IO	Client
which	can	be	emitted	by	the	server	side

3.	 On	connection,	the	client	emits	the	time	event	first
4.	 Afterwards,	the	time	event	is	fired	on	the	server	side	which	will

emit	the	"got	time?"	event	providing	two	arguments,	the	current
server's	time	and	a	counter	that	specifies	how	many	times	a
request	was	made

5.	 Then,	the	"got	time?"	event	is	fired	on	the	client	side	receiving
two	arguments	that	were	provided	by	the	server,	the	time	and	a
counter

268

Working	with	Socket.IO
namespaces
Namespaces	are	a	way	of	separating	the	business	logic	of	your
application	while	reusing	the	same	TCP	connection	or	minimizing	the
need	for	creating	new	TCP	connections	for	to	implement	real-time
communication	between	the	server	and	the	client.

Namespaces	look	pretty	similar	to	ExpressJS'	route	paths:

/home	

/users	

/users/profile	

However,	as	mentioned	in	previous	recipes,	these	are	not	related	to
URLs.	By	default,	a	single	TCP	connection	is	created	at	this	URL
http[s]://host:port/socket.io

Reusing	the	same	event	names	is	a	good	practice	when	using
namespaces.	For	example,	let's	suppose	that	we	have	a	Socket.IO	server
that	we	use	to	emit	a	setWelcomeMsg	event	when	the	client	emits	a
getWelcomeMsg	event:

io.of('/en').on('connection',	(socket)	=>	{	

				socket.on('getWelcomeMsg',	()	=>	{	

								socket.emit('setWelcomeMsg',	'Hello	World!')	

				})	

})	

io.of('/es').on('connection',	(socket)	=>	{	

				socket.on('getWelcomeMsg',	()	=>	{	

								socket.emit('setWelcomeMsg',	'Hola	Mundo!')	

				})	

})	

269

As	you	can	see,	we	defined	a	listener	for	the	event	getWelcomeMsg	in	two
different	namespaces:

If	the	client	is	connected	to	the	English	or	/en	namespace,	when
the	setWelcomeMsg	event	is	fired,	the	client	will	receive	"Hello
World!"

On	the	other	hand,	if	the	client	is	connected	to	the	Spanish	or
/es	namespace,	when	the	setWelcomeMsg	event	is	fired,	the	client
will	receive	"Hola	Mundo!"

270

Getting	ready
In	this	recipe,	you	will	see	how	to	work	with	two	different	namespaces
that	contain	the	same	event	names.	Before	you	start,	create	a	new
package.json	file	with	the	following	content:

{	

		"dependencies":	{	

				"socket.io":	"2.1.0"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

271

How	to	do	it...
Build	a	Socket.IO	server	that	will	fire	a	data	event	and	send	an	object
containing	two	properties,	title	and	msg,	that	will	be	used	to	populate
HTML	content	in	the	selected	language.	Use	namespaces	to	separate
and	send	different	data	according	to	the	language	that	the	client
chooses,	English	or	Spanish.

1.	 Create	a	new	file	named	nsp-server.js
2.	 Include	the	Socket.IO	npm	module	and	the	required	modules

for	creating	an	HTTP	server:

						const	http	=	require('http')	

						const	fs	=	require('fs')	

						const	path	=	require('path')	

						const	io	=	require('socket.io')()	

3.	 Use	the	http	module	to	create	a	new	HTTP	server	that	will	serve
an	HTML	file	you	will	create	later	as	a	Socket.IO	client:

					const	app	=	http.createServer((req,	res)	=>	{	

						if	(req.url	===	'/')	{	

															fs.readFile(

															path.resolve(__dirname,	'nsp-client.html'),	

														(err,	data)	=>	{	

																		if	(err)	{	

																				res.writeHead(500)	

																				return	void	res.end()	

																			}	

																				res.writeHead(200)	

																				res.end(data)	

																}	

)	

										}	else	{	

272

														res.writeHead(403)	

													res.end()	

									}	

				})	

4.	 Specify	the	path	new	connections	will	be	made	to:

						io.path('/socket.io')	

5.	 For	the	"/en"	namespace,	add	a	new	event	listener,	getData,
which	when	fired	will	emit	a	data	event	on	the	client	side	and
send	an	object	including	a	title	and	a	msg	property	in	the
English	language:

					io.of('/en').on('connection',	(socket)	=>	{	

								socket.on('getData',	()	=>	{	

												socket.emit('data',	{	

															title:	'English	Page',	

															msg:	'Welcome	to	my	Website',	

											})	

								})	

			})	

6.	 For	the	"/es"	namespace,	do	the	same.	However,	the	object	sent
to	the	client	will	include	a	title	and	a	msg	property	in	the
Spanish	language:

						io.of('/es').on('connection',	(socket)	=>	{	

										socket.on('getData',	()	=>	{	

														socket.emit('data',	{	

																		title:	'Página	en	Español',	

																		msg:	'Bienvenido	a	mi	sitio	Web',	

														})	

										})	

						})	

273

7.	 Listen	on	port	1337	for	new	connections	and	attach	Socket.IO	to
the	underlying	HTTP	server:

						io.attach(app.listen(1337,	()	=>	{	

										console.log(

														'HTTP	Server	and	Socket.IO	running	on	port	1337'	

)	

						}))	

8.	 Save	the	file.

Afterwards,	create	a	Socket.IO	client	that	will	connect	to	our	server	and
populate	HTML	content	based	on	the	data	received	from	the	server.

1.	 Create	a	new	file	named	nsp-client.html
2.	 First,	specify	the	document	type	as	HTML5.	Next	to	it,	add	an

html	tag	and	set	the	language	to	English.	Inside	the	html	tag,
include	the	head	and	body	tags	as	well:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Socket.IO	Client</title>	

						</head>	

						<body>	

										<!--	code	here	-->	

						</body>	

						</html>	

3.	 Inside	the	body	tag,	add	the	first	three	elements:	a	heading	(h1)
that	will	contain	the	title	of	the	content,	a	p	tag	that	will	include
a	message	from	the	server,	and	a	button	that	will	be	used	to
switch	to	a	different	namespace.	Also,	include	the	Socket.IO
client	library.	The	Socket.IO	server	will	make	the	library	file

274

available	at	this	URL:	http[s]://host:port/socket.io/socket.io.js	.
Then,	also	include	as	well	the	babel	standalone	library	which
will	transform	the	code	in	the	next	steps	into	JavaScript	code
that	can	run	in	all	browsers:

						<h1	id="title"></h1>	

						<section	id="msg"></section>	

						<button	id="toggleLang">Get	Content	in	Spanish</button>	

							<script	src="http://localhost:1337/socket.io/socket.io.js">		

							</script>	

								<script	

src="https://unpkg.com/@babel/standalone/babel.min.js">

						</script>	

4.	 Inside	the	body,	after	the	last	script	tags,	add	another	script	tag
and	set	its	type	to	"text/babel":

						<script	type="text/babel">	

										//	code	here!	

						</script>	

5.	 After	that,	inside	the	script	tag,	add	the	following	JavaScript
code

6.	 Define	three	constants	that	will	contain	a	reference	to	the
elements	we	have	created	in	the	body:

						const	title	=	document.getElementById('title')	

						const	msg	=	document.getElementById('msg')	

						const	btn	=	document.getElementById('toggleLang')	

7.	 Define	a	Socket.IO	client	manager.	It	will	help	us	to	create
sockets	with	the	provided	configuration:

275

						const	manager	=	new	io.Manager(

										'http://localhost:1337',	

										{	path:	'/socket.io'	},	

)	

8.	 Create	a	new	socket	that	will	connect	to	the	"/en"	namespace.
We	will	assume	that	this	is	the	default	connection:

						const	socket	=	manager.socket('/en')	

9.	 Reserve	two	connections	for	namespaces	"/en"	and	"/es".	A
reserved	connection	will	allow	us	to	switch	to	a	different
namespace	without	the	need	of	to	create	a	new	TCP
connection:

						manager.socket('/en')	

						manager.socket('/es')	

10.	 Add	an	event	listener	that,	once	the	socket	is	connected,	will
emit	a	getData	event	to	request	data	from	the	server:

						socket.on('connect',	()	=>	{	

										socket.emit('getData')	

						})	

11.	 Add	an	event	listener	for	the	data	event	that	will	get	triggered
when	the	client	received	data	from	the	server:

						socket.on('data',	(data)	=>	{	

										title.textContent	=	data.title	

										msg.textContent	=	data.msg	

						})	

276

12.	 Add	an	event	listener	for	the	button.	When	it	gets	clicked,
switch	to	a	different	namespace:

						btn.addEventListener('click',	(event)	=>	{	

										socket.nsp	=	socket.nsp	===	'/en'	

														?	'/es'	

														:	'/en'	

										btn.textContent	=	socket.nsp	===	'/en'	

														?	'Get	Content	in	Spanish'	

														:	'Get	Content	in	English'	

										socket.close()	

										socket.open()	

						})	

13.	 Save	the	file
14.	 Open	a	new	terminal	and	run:

						node	nsp-server.js

15.	 In	the	web	browser,	navigate	to:

						http://localhost:1337/

277

Let's	test	it...
To	see	your	previous	work	in	action,	follow	these	steps:

1.	 Once	you	navigate	to	http://localhost:1337/	in	your	web	browser,
click	on	the	"Get	Content	in	Spanish"	button	to	switch	to	the
Spanish	namespace

2.	 Click	on	the	"Get	Content	in	English"	button	to	switch	back	to	the
English	namespace

278

How	it	works...
This	is	what	happens	on	the	server	side:

1.	 We	defined	two	namespaces,	"/en"	and	"/es",	then	added	a	new
event	listener,	getData,	to	the	socket	object.

2.	 When	the	getData	event	is	fired	in	any	of	the	two	defined
namespaces,	it	will	emit	a	data	event	and	send	an	object,	that
contains	a	title	and	a	message	property,	to	the	client

On	the	client	side,	inside	the	script	tag	in	our	HTML	document:

1.	 Initially,	a	new	socket	is	created	for	the	namespace	"/en":

						const	socket	=	manager.socket('/en')

2.	 At	the	same	time,	we	created	two	new	sockets	for	the
namespaces	"/en"	and	"/es".	They	will	act	as	reserved
connections:

						manager.socket('/en')

						manager.socket('/es')

3.	 After,	an	event	listener	connect	was	added	that	sends	a	request
to	the	server	on	connection

4.	 Then,	another	event	listener	data	was	added	that	is	fired	when
data	is	received	from	the	server

279

5.	 Inside	the	event	listener	that	handles	onclick	events	for	our
button,	we	change	the	nsp	property	to	switch	to	a	different
namespace.	However,	for	this	to	happen,	we	had	to	disconnect
the	socket	first,	and	call	the	open	method	to	make	a	new
connection	again	using	the	new	namespace

Let's	see	one	of	the	confusing	parts	about	reserved	connections.	When
you	create	one	or	more	sockets	in	the	same	namespace,	the	first
connection	is	reused,	for	example:

const	first	=	manager.socket('/home')

const	second	=	manager.socket('/home')	//	<-	reuses	first	connection

On	the	client	side,	if	there	were	no	reserved	connections,	then	switching
to	a	namespace	that	was	not	used	before	would	result	in	a	new
connection	being	created.
If	you	are	curious,	remove	these	two	lines	from	the	nsp-client.html	file:

manager.socket('/en')

manager.socket('/es')

Afterwards,	restart	or	run	the	Socket.IO	server	again.	You	will	notice
that	there	is	a	slow	response	when	switching	to	a	different	namespace
because	a	new	connection	is	created	instead	of	being	reused.

There	is	an	alternative	way	of	achieving	the	same	goal.	We	could	have
created	two	sockets	that	point	to	two	different	namespaces,	"/en"	and
"/es".	Then,	we	could	have	added	two	event	listeners	connect	and	data
to	each	socket.	However,	because	the	first	and	second	socket	would
contain	the	same	event	names	and	receive	data	in	the	same	format	from
the	server,	we	would	have	gotten	repeated	code.	Imagine	the	case	if	we
had	to	do	the	same	for	five	different	namespaces	that	have	the	same
event	names	and	receive	data	in	the	same	format,	there	would	be	too
many	repeated	lines	of	code.	This	is	where	switching	namespaces	and
reusing	the	same	socket	object	is	helpful.	However,	there	may	be	cases
were	two	or	more	different	namespaces	have	different	event	names	for
different	kinds	of	event,	in	that	case,	it	is	better	to	add	event	listeners

280

for	each	of	the	namespaces	separately.	For	example:

const	englishNamespace	=	manager.socket('/en')

const	spanishNamespace	=	manager.socket('/es')

//	They	listen	to	different	events

englishNamespace.on('showMessage',	(data)	=>	{})

spanishNamespace.on('mostrarMensaje',	(data)	=>	{})

281

There's	more...
On	the	client	side,	you	have	probably	noticed	one	thing	that	we	didn't
use	before,	io.Manager.

282

io.Manager
This	allows	us	predefine	or	configure	how	new	connections	will	be
created.	The	options	defined	in	a	Manager,	as	the	URL,	will	be	passed	to
the	socket	on	initiation.

In	our	HTML	file,	inside	a	script	tag,	we	created	a	new	instance	of
io.Manager	and	passed	two	arguments;	the	server	URL	and	an	options
object	including	a	path	property	which	indicates	where	new	connections
will	be	made:

const	manager	=	new	io.Manager(

				'http://localhost:1337',	

				{	path:	'/socket.io'	},	

)	

To	find	out	more	about	the	io.Manager	API	visit	the	official
documentation	Website	offer	for	Socket.IO	https://socket.io/docs/client-
api/#manager.

Later,	we	used	the	socket	method	to	initialize	and	create	a	new	Socket
for	the	provided	namespace:

const	socket	=	manager.socket('/en')	

This	way,	it	is	easier	to	work	with	several	namespaces	at	the	same	time
without	having	to	configure	each	one	of	them	with	the	same	options.

https://socket.io/docs/client-api/#manager

283

Defining	and	joining
Socket.IO	rooms
Within	namespaces,	you	can	define	rooms	or	channels	that	a	socket	can
join	and	leave.

By	default,	a	room	is	created	with	a	random	un-guessable	ID	for	the
connected	socket:

io.on('connection',	(socket)	=>	{	

				console.log(socket.id)	//	Outputs	socket	ID	

})	

On	connection,	when	emitting	an	event,	for	example:

io.on('connection',	(socket)	=>	{	

				socket.emit('say',	'hello')	

})	

What	happens	underneath	is	similar	to	this:

io.on('connection',	(socket)	=>	{	

				socket.join(socket.id,	(err)	=>	{	

								if	(err)	{	

												return	socket.emit('error',	err)	

								}	

								io.to(socket.id).emit('say',	'hello')	

				})	

})	

The	join	method	was	used	to	include	the	socket	inside	a	room.	In	this
case,	the	socket	ID	is	the	joint	room,	and	the	only	client	connected	to
that	room	is	the	socket	itself.

284

Because	a	socket	ID	represents	a	unique	connection	with	a	client	and,
by	default,	a	room	with	the	same	ID	is	created;	all	data	sent	by	the
server	to	that	room	will	be	received	only	by	that	client.	However,	if
several	clients	or	socket	IDs	join	a	room	with	the	same	name	and	the
server	sends	data;	all	clients	could	be	able	to	receive	it.

285

Getting	ready
In	this	recipe,	you	will	see	how	to	join	a	room	and	broadcast	a	message
to	all	clients	connected	to	that	specific	room.	Before	you	start,	create	a
new	package.json	file	with	the	following	content:

{	

		"dependencies":	{	

				"socket.io":	"2.1.0"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

286

How	to	do	it...
Build	a	Socket.IO	server	that	will	notify	all	the	connected	clients	to	the
"commonRoom"	room	when	a	new	socket	is	connected.

1.	 Create	a	new	file	named	rooms-server.js
2.	 Include	the	Socket.IO	NPM	module	and	initialize	a	new	HTTP

server:

						const	http	=	require('http')	

						const	fs	=	require('fs')	

						const	path	=	require('path')	

						const	io	=	require('socket.io')()	

						const	app	=	http.createServer((req,	res)	=>	{	

										if	(req.url	===	'/')	{	

														fs.readFile(

																		path.resolve(__dirname,	'rooms-client.html'),	

																		(err,	data)	=>	{	

																					if	(err)	{	

																										res.writeHead(500)	

																										return	void	res.end()	

																						}	

																						res.writeHead(200)	

																						res.end(data)	

																		}	

)	

										}	else	{	

														res.writeHead(403)	

														res.end()	

										}	

						})	

3.	 Specify	the	path	where	new	connections	will	be	made:

						io.path('/socket.io')	

287

4.	 Use	the	root	namespace	to	listen	for	events:

						const	root	=	io.of('/')	

5.	 Define	a	method	that	will	be	used	to	emit	an	updateClientCount
event	to	all	socket	clients	connected	to	the	"commonRoom"
providing	as	an	argument	the	number	of	connected	clients:

						const	notifyClients	=	()	=>	{	

										root.clients((error,	clients)	=>	{	

														if	(error)	throw	error	

														root.to('commonRoom').emit(

																		'updateClientCount',	

																		clients.length,	

)	

										})	

						}	

6.	 On	connection,	all	newly	connected	Socket	clients	will	join	the
commonRoom.	Then,	the	server	will	emit	a	welcome	event.	After	this,
notify	all	connected	sockets	to	update	the	number	of	connected
clients	and	also	do	the	same	operation	once	a	client	is
disconnected:

						root.on('connection',	socket	=>	{	

										socket.join('commonRoom')	

										socket.emit('welcome',	`Welcome	client:	${socket.id}`)	

										socket.on('disconnect',	notifyClients)	

										notifyClients()	

						})	

7.	 Listen	on	port	1337	for	new	connections	and	attach	Socket.IO	to
the	HTTP	server:

288

						io.attach(app.listen(1337,	()	=>	{	

										console.log(

														'HTTP	Server	and	Socket.IO	running	on	port	1337'	

)	

						}))	

8.	 Save	the	file.

After	this,	build	a	Socket.IO	client	that	will	connect	to	the	Socket.IO
server	and	populate	the	HTML	content	with	received	data:

1.	 Create	a	new	file	named	rooms-client.html
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Socket.IO	Client</title>	

						</head>	

						<body>	

										<h1	id="title">	

														Connected	clients:	

															

										</h1>	

										<p	id="welcome"></p>	

										<script	

src="http://localhost:1337/socket.io/socket.io.js">

										</script>	

										<script	

										src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

										<script	type="text/babel">	

						//	Code	here	

										</script>	

						</body>	

						</html>	

3.	 Inside	the	script	tag,	add	code	in	the	following	steps,	starting
from	step	4

289

4.	 Define	two	constants	that	will	make	a	reference	to	two	HTML
elements	that	we	will	update	according	to	the	data	sent	by	the
Socket.IO	Server:

						const	welcome	=	document.getElementById('welcome')	

						const	n	=	document.getElementById('n')	

5.	 Define	a	Socket.IO	Client	Manager:

						const	manager	=	new	io.Manager(

										'http://localhost:1337',	

										{	path:	'/socket.io'	},	

)	

6.	 Use	the	root	namespace	which	is	the	one	used	in	the	Socket.IO
Server:

						const	socket	=	manager.socket('/')	

7.	 Add	an	event	listener	for	the	welcome	event	that	expects	an
argument	that	will	contain	a	welcome	message	sent	by	the
server:

						socket.on('welcome',	msg	=>	{	

										welcome.textContent	=	msg	

						})	

8.	 Add	an	event	listener	for	the	updateClientCount	event	that	expects
an	argument	that	will	contain	the	number	of	connected	clients:

http://localhost:1337

290

						socket.on('updateClientCount',	clientsCount	=>	{	

										n.textContent	=	clientsCount	

						})	

9.	 Save	the	file
10.	 Open	a	new	Terminal	and	run:

						node	rooms-server.js

11.	 On	the	web	browser,	navigate	to:

						http://localhost:1337/

12.	 Without	closing	the	previous	tab	or	window,	on	the	web
browser,	navigate	once	again	to:

						http://localhost:1337/

13.	 The	number	of	connected	clients	in	both	tabs	or	windows
should	have	increased	to	2

291

There's	more...
Sending	the	same	message	or	data,	to	more	than	one	client,	is	called
broadcasting.	The	method	we	have	seen	broadcasts	a	message	to	all
clients,	including	the	client	that	generated	the	request.

There	are	other	several	methods	to	broadcast	a	message.	For	instance:

socket.to('commonRoom').emit('updateClientCount',	data)	

Which	will	emit	an	updateClientCount	event	to	all	clients	in	commonRoom
expect	to	the	sender	or	the	socket	that	originated	the	request.

For	a	complete	list	check	the	official	documentation	of	Socket.IO	emit
cheatsheet:	https://socket.io/docs/emit-cheatsheet/

https://socket.io/docs/emit-cheatsheet/

292

Writing	middleware	for
Socket.IO
Socket.IO	allows	us	to	define	two	kinds	of	middleware	functions	in	the
server	side:

Namespace	middleware:	Registers	a	function	that	gets
executed	for	every	new	connected	Socket	and	has	the	following
signature:

						namespace.use((socket,	next)	=>	{	...	})	

Socket	middleware:	Registers	a	function	that	gets	executed	for
every	incoming	Packet	and	has	the	following	signature:

						socket.use((packet,	next)	=>	{	...	})	

It	works	similarly	to	how	ExpressJS	middleware	functions	do.	We	can
add	new	properties	to	the	socket	or	packet	objects.	Then,	we	can	call	next
to	pass	the	control	to	the	next	middleware	in	the	chain.	If	next	is	not
called,	then	the	socket	won't	be	connected,	or	the	packet	received.

293

Getting	ready
In	this	recipe,	you	will	build	a	Socket.IO	server	application	where	you
will	define	middleware	functions	to	restrict	access	to	a	certain
namespace	as	well	as	restricting	access	to	a	certain	socket	based	on
some	criteria.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

		"dependencies":	{	

				"socket.io":	"2.1.0"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

				npm	install

294

How	to	do	it...
The	Socket.IO	server	application	will	expect	the	users	to	be	logged-in
in	order	for	them	to	be	able	to	connect	to	the	/home	namespace.	Using
socket	middleware,	we	will	also	restrict	access	to	/home	namespace	to	a
certain	user:

1.	 Create	a	new	file	named	middleware-server.js
2.	 Include	the	Socket.IO	library	and	initialize	a	new	HTTP	server:

						const	http	=	require('http')	

						const	fs	=	require('fs')	

						const	path	=	require('path')	

						const	io	=	require('socket.io')()	

						const	app	=	http.createServer((req,	res)	=>	{	

										if	(req.url	===	'/')	{	

														fs.readFile(

																		path.resolve(__dirname,	'middleware-cli.html'),	

																		(err,	data)	=>	{	

																						if	(err)	{	

																										res.writeHead(500)	

																										return	void	res.end()	

																						}	

																						res.writeHead(200)	

																						res.end(data)	

																		}	

)	

										}	else	{	

														res.writeHead(403)	

														res.end()	

										}	

						})	

2.	 Specify	the	path	where	new	connections	will	be	made:

295

						io.path('/socket.io')	

3.	 Define	an	array	of	users	that	we	will	use	as	an	in-memory
database:

						const	users	=	[

										{	username:	'huangjx',	password:	'cfgybhji'	},	

										{	username:	'johnstm',	password:	'mkonjiuh'	},	

										{	username:	'jackson',	password:	'qscwdvb'	},	

]	

4.	 Define	a	method	to	verify	if	the	provided	username	and
password	exist	in	the	users	array:

						const	userMatch	=	(username,	password)	=>	(

										users.find(user	=>	(

														user.username	===	username	&&	

														user.password	===	password	

))	

)	

5.	 Define	a	namespace	middleware	function	that	will	check
whether	the	user	is	already	logged-in.	A	client	won't	be	able	to
connect	to	a	specific	namespace	using	this	middleware	if	they
are	not	logged	in:

						const	isUserLoggedIn	=	(socket,	next)	=>	{	

										const	{	session	}	=	socket.request	

										if	(session	&&	session.isLogged)	{	

														next()	

										}	

						}	

6.	 Define	two	namespaces,	one	for	/login	and	another	for	/home.

296

The	/home	namespace	will	use	our	previously	defined
middleware	function	to	check	whether	the	user	is	logged	in:

						const	namespace	=	{	

										home:	io.of('/home').use(isUserLoggedIn),	

										login:	io.of('/login'),	

						}	

7.	 When	a	new	socket	is	connected	to	/login	namespace,	first	we
will	define	a	socket	middleware	function	for	checking	all
incoming	packages	and	ban	access	to	the	johntm	username.
Then,	we	will	add	an	event	listener	for	the	enter	event	that	will
expect	to	receive	a	plain	object	containing	a	username	and
password,	and	if	they	exist	in	the	users	array,	then	we	set	a
session	object	which	will	tell	whether	the	user	is	logged	in.
Otherwise,	we	will	send	a	loginError	event	with	an	error
message	to	the	client:

						namespace.login.on('connection',	socket	=>	{	

										socket.use((packet,	next)	=>	{	

														const	[evtName,	data]	=	packet	

														const	user	=	data	

														if	(evtName	===	'tryLogin'	

																		&&	user.username	===	'johnstm')	{	

																		socket.emit('loginError',	{	

																						message:	'Banned	user!',	

																		})	

														}	else	{	

																		next()	

														}	

										})	

										socket.on('tryLogin',	userData	=>	{	

														const	{	username,	password	}	=	userData	

														const	request	=	socket.request	

														if	(userMatch(username,	password))	{	

																		request.session	=	{	

																						isLogged:	true,	

																						username,	

																		}	

297

																		socket.emit('loginSuccess')	

														}	else	{	

																		socket.emit('loginError',	{	

																						message:	'invalid	credentials',	

																		})	

														}	

										})	

						})	

8.	 Listen	on	port	1337	for	new	connections	and	attach	Socket.IO
to	the	HTTP	server:

						io.attach(app.listen(1337,	()	=>	{	

										console.log(

														'HTTP	Server	and	Socket.IO	running	on	port	1337'	

)	

						}))	

9.	 Save	the	file

After	this,	build	a	Socket.IO	client	application	that	will	connect	to	our
Socket.IO	Server	and	allow	us	to	attempt	to	log	in	and	test:

1.	 Create	a	new	file	named	middleware-cli.html
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Socket.IO	Client</title>	

										<script	

src="http://localhost:1337/socket.io/socket.io.js">

										</script>	

										<script	

										src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

						</head>	

						<body>	

298

										<h1	id="title"></h1>	

										<form	id="loginFrm"	disabled>	

												<input	type="text"	name="username"	

placeholder="username"/>	

														<input	type="password"	name="password"	

																placeholder="password"	/>	

														<input	type="submit"	value="LogIn"	/>	

														<output	name="logs"></output>	

										</form>	

										<script	type="text/babel">	

														//	Code	here	

										</script>	

						</body>	

						</html>	

3.	 Inside	the	script	tag,	add	the	code	in	the	following	steps,
starting	from	step	4

4.	 Define	three	constant	that	will	make	a	reference	to	the	HTML
elements	that	we	will	use	to	get	input	or	display	output:

						const	title	=	document.getElementById('home')	

						const	error	=	document.getElementsByName('logErrors')[0]	

						const	loginForm	=	document.getElementById('loginForm')	

5.	 Define	a	Socket.IO	Manager:

						const	manager	=	new	io.Manager(

										'http://localhost:1337',	

										{	path:	'/socket.io'	},	

)	

6.	 Let's	define	a	namespace	constant	that	will	contain	an	object
containing	the	Socket.IO	namespaces	/home	and	/login:

						const	namespace	=	{	

										home:	manager.socket('/home'),	

										login:	manager.socket('/login'),	

299

						}	

7.	 Add	an	event	listener	for	the	connect	event	to	the	/home
namespace.	It	will	get	triggered	only	when	the	/home	namespace
successfully	connects	to	the	server:

						namespace.home.on('connect',	()	=>	{	

										title.textContent	=	'Great!	you	are	connected	to	/home'	

										error.textContent	=	''	

						})	

8.	 Add	an	event	listener	for	the	loginSuccess	event	to	the	/login
namespace.	It	will	ask	the	/home	namespace	to	connect	to	the
server	again.	If	the	user	is	logged	in,	then	the	server	will	allow
this	connection:

						namespace.login.on('loginSuccess',	()	=>	{	

										namespace.home.connect()	

						})	

9.	 Add	an	event	listener	for	the	loginError	event	to	the	/login
namespace.	It	will	display	error	messages	sent	by	the	server:

						namespace.login.on('loginError',	(err)	=>	{	

										logs.textContent	=	err.message	

						})	

10.	 Add	an	event	listener	for	the	submit	event	for	the	login	form.	It
will	emit	the	enter	event	providing	an	object	containing	the
username	and	password	filled	in	the	form:

300

						form.addEventListener('submit',	(event)	=>	{	

										const	body	=	new	FormData(form)	

										namespace.login.emit('tryLogin',	{	

														username:	body.get('username'),	

														password:	body.get('password'),	

										})	

										event.preventDefault()	

						})	

11.	 Save	the	file

301

Let's	test	it...
To	see	our	previous	work	in	action:

1.	 Run	the	Socket.IO	server	first.	Open	a	new	terminal	and	run:

						node	middleware-server.js

2.	 On	your	web	browser,	navigate	to:

						http://localhost:1337

3.	 You	will	see	a	login	form	with	two	fields,	username	and	password
4.	 Try	to	log	in	with	random	invalid	credentials.	The	following

error	is	displayed:

						invalid	credentials	

5.	 Next,	try	to	log	in	with	johntm	as	username	and	any	password.	The
following	error	is	displayed:

						Banned	user!	

6.	 After	that,	log	in	with	any	of	the	two	other	valid	credentials.
For	instance,	using	jingxuan	as	username	and	qscwdvb	as

302

password.	The	following	title	is	displayed:

						Connected	to	/home	

303

Integrating	Socket.IO
with	ExpressJS
Socket.IO	works	well	with	ExpressJS.	In	fact,	it's	possible	to	run	an
ExpressJS	application	and	a	Socket.IO	server	using	the	same	port	or
HTTP	server.

304

Getting	ready
In	this	recipe,	we	will	see	how	to	integrate	Socket.IO	with	ExpressJS.
You	will	build	an	ExpressJS	application	that	will	serve	an	HTML	file
containing	a	Socket.IO	client	application.	Before	you	start,	create	a	new
package.json	file	with	the	following	content:

{	

		"dependencies":	{	

				"express":	"4.16.3",	

				"socket.io":	"2.1.0"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

305

How	to	do	it...
Create	a	Socket.IO	client	application	that	will	connect	to	the	Socket.IO
server,	that	you	will	build	next,	and	display	a	welcome	message	sent	by
the	server.

1.	 Create	a	new	file	named	io-express-view.html
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Socket.IO	Client</title>	

										<script	

src="http://localhost:1337/socket.io/socket.io.js">

										</script>	

										<script	

											src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

						</head>	

						<body>	

										<h1	id="welcome"></h1>	

										<script	type="text/babel">	

														const	welcome	=	document.getElementById('welcome')	

														const	manager	=	new	io.Manager(

																		'http://localhost:1337',	

																		{	path:	'/socket.io'	},	

)	

														const	root	=	manager.socket('/')	

														root.on('welcome',	(msg)	=>	{	

																		welcome.textContent	=	msg	

														})	

										</script>	

						</body>	

						</html>	

306

3.	 Save	the	file

Next,	build	an	ExpressJS	application	and	a	Socket.IO	server.	The
ExpressJS	application	will	serve	the	previously	created	HTML	file	on
the	root	path	"/":

1.	 Create	a	new	file	named	io-express-server.js
2.	 Initialize	a	new	Socket.IO	server	application	and	an	ExpressJS

application:

						const	path	=	require('path')	

						const	express	=	require('express')	

						const	io	=	require('socket.io')()	

						const	app	=	express()	

3.	 Define	the	URL	path	where	new	connections	will	be	made	to
the	Socket.IO	server:

						io.path('/socket.io')	

4.	 Define	a	route	method	to	serve	our	HTML	file	containing	our
Socket.IO	client	application:

						app.get('/',	(req,	res)	=>	{	

										res.sendFile(path.resolve(

														__dirname,	

														'io-express-view.html',	

))	

						})	

5.	 Define	a	namespace	"/"	and	emit	a	welcome	event	with	welcome
message:

307

						io.of('/').on('connection',	(socket)	=>	{	

										socket.emit('welcome',	'Hello	from	Server!')	

						})	

6.	 Attach	the	Socket.IO	to	ExpressJS	Server:

						io.attach(app.listen(1337,	()	=>	{	

										console.log(

														'HTTP	Server	and	Socket.IO	running	on	port	1337'	

)	

						}))	

7.	 Save	the	file
8.	 Open	the	Terminal	and	run:

						node	io-express-server.js

9.	 In	your	browser,	visit:

						http://localhost:1337/

308

How	it	works...
Socket.IO's	attach	method	expects	to	receive	a	HTTP	server	as	a
parameter	in	order	to	attach	the	Socket.IO	server	application	to	it.	The
reason	why	we	can	attach	Socket.IO	to	an	ExpressJS	server	application
is	because	the	listen	method	returns	the	underlying	HTTP	server	to
which	ExpressJS	is	connected.

To	sum	up,	the	listen	method	returns	the	underlying	HTTP	server.	Then,
it	is	passed	as	a	parameter	to	the	attach	method.	This	way,	we	can	share
the	same	connection	with	ExpressJS.

309

There's	more...
So	far,	we	have	seen	that	we	can	share	the	same	underlying	HTTP
server	between	ExpressJS	and	Socket.IO.	However,	that	is	not	all.

The	reason	why	we	define	a	Socket.IO	path	is	actually	useful	when
working	with	ExpressJS.	Take	the	following	example:

const	express	=	require('express')	

const	io	=	require('socket.io')()	

const	app	=	express()	

io.path('/socket.io')

	app.get('/socket.io',	(req,	res)	=>	{	

				res.status(200).send('Hey	there!')	

})	

io.of('/').on('connection',	socket	=>	{	

				socket.emit('someEvent',	'Data	from	Server!')	

})	

io.attach(app.listen(1337))	

As	you	can	see,	we	are	using	the	same	URL	path	for	Socket.IO	and
ExpressJS.	We	accept	new	connections	to	the	Socket.IO	server	on	the
/socket.io	path,	but	we	also	send	content	for	/socket.io	using	the	GET
route	method.

Even	though	this	preceding	example	won't	actually	break	your
application,	make	sure	to	never	use	the	same	URL	path	to	serve	content
from	ExpressJS	and	accept	new	connections	for	Socket.IO	at	the	same
time.	For	instance,	changing	the	previous	code	to	this:

io.path('/socket.io')

	app.get('/socket.io/:msg',	(req,	res)	=>	{	

				res.status(200).send(req.params.msg)	

})	

While	you	may	expect	your	browser,	when	visiting

310

http://localhost:1337/socket.io/message,	to	display	message,	that	won't	be	the
case	and	you	will	see	the	following	instead:

{"code":0,"message":"Transport	unknown"}	

That	is	because	Socket.IO	will	interpret	the	incoming	data	first	and	it
won't	understand	the	data	you	just	sent.	In	addition,	your	route	handler
will	never	be	executed.

Besides	that,	the	Socket.IO	server	also	serves,	by	default,	its	own
Socket.IO	Client	under	the	defined	URL	path.	For	example,	try	visiting
http://localhost:1337/socket.io/socket.io.js	and	you	will	be	able	to	see	the
minimized	JavaScript	code	of	the	Socket.IO	client.

If	you	wish	to	server	your	own	version	of	Socket.IO	client	or	if	it	is
included	in	the	bundle	of	your	application,	you	can	disable	the	default
behavior	in	your	Socket.IO	server	application	with	the	serveClient
method:

io.serveClient(false)	

http://localhost:1337/socket.io/socket.io.js

311

See	also
Chapter	2,	Building	a	Web	server	with	ExpressJS,	section	Using
Express.js'	built-in	middleware	function	for	serving	static	assets

312

Using	ExpressJS
middleware	in
Socket.IO
Socket.IO	namespace	middleware	works	pretty	similar	to	how
ExpressJS	middleware	does.	In	fact,	the	Socket	Object	also	contains	a
request	and	a	response	object	that	we	can	use	to	store	other	properties	in
the	same	manner	as	we	do	with	ExpressJS	middleware	functions:

namespace.use((socket,	next)	=>	{	

				const	req	=	socket.request	

				const	res	=	socket.request.res	

				next()	

})	

Because	ExpressJS	middleware	functions	have	the	following	signature:

const	expressMiddleware	=	(request,	response,	next)	=>	{	

				next()	

}	

We	can	safely	execute	the	same	function	in	a	Socket.IO	namespace
middleware	passing	the	necessary	arguments:

root.use((socket,	next)	=>	{	

				const	req	=	socket.request	

				const	res	=	socket.request.res	

				expressMiddleware(req,	res,	next)	

})	

However,	that	doesn't	mean	that	all	ExpressJS	middleware	functions
will	work	out	of	the	box.	For	example,	if	an	ExpressJS	middleware

313

function	uses	methods	only	available	within	ExpressJS,	it	may	fail	or
have	an	unexpected	behavior.

314

Getting	ready
In	this	recipe,	we	will	see	how	to	integrate	the	ExpressJS	express-session
middleware	to	share	the	session	object	between	Socket.IO	and
ExpressJS.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

		"dependencies":	{	

				"express":	"4.16.3",	

				"express-session":	"1.15.6",	

				"socket.io":	"2.1.0"	

		}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

315

How	to	do	it...
Build	a	Socket.IO	client	application	that	will	connect	to	a	Socket.IO
server	you	will	build	next.	Include	a	form	where	the	user	can	type	a
username	and	a	password	to	attempt	to	log	in.	The	Socket.IO	client	will
only	be	able	to	connect	to	the	/home	namespace	after	the	user	is	logged-
in:

1.	 Create	a	new	file	named	io-express-cli.html
2.	 Add	the	following	HTML	content:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Socket.IO	Client</title>	

										<script	

src="http://localhost:1337/socket.io/socket.io.js">		

										</script>	

										<script	

											src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

						</head>	

						<body>	

										<h1	id="title"></h1>	

										<form	id="loginForm">	

												<input	type="text"	name="username"	

placeholder="username"/>	

														<input	type="password"	name="password"	

																placeholder="password"	/>	

														<input	type="submit"	value="LogIn"	/>	

														<output	name="logErrors"></output>	

										</form>	

										<script	type="text/babel">	

														//	Code	here	

										</script>	

						</body>	

						</html>	

316

3.	 Inside	the	script	tag	add	the	code	in	the	next	steps,	starting	from
step	4

4.	 Define	constants	that	make	a	reference	to	the	HTML	elements
that	we	will	use:

						const	title	=	document.getElementById('title')	

						const	error	=	document.getElementsByName('logErrors')[0]	

						const	loginForm	=	document.getElementById('loginForm')	

5.	 Define	a	Socket.IO	Manager:

						const	manager	=	new	io.Manager(

										'http://localhost:1337',	

										{	path:	'/socket.io'	},	

)	

6.	 Define	two	namespaces,	one	for	/login	and	another	one	for
/home:

						const	namespace	=	{	

										home:	manager.socket('/home'),	

										login:	manager.socket('/login'),	

						}	

7.	 Add	an	event	listener	for	the	welcome	event	that	will	be	triggered
by	the	server	side	once	a	connection	is	allowed	to	the	/home
namespace:

						namespace.home.on('welcome',	(msg)	=>	{	

										title.textContent	=	msg	

										error.textContent	=	''	

						})	

317

8.	 Add	an	event	listener	for	loginSuccess	event	that,	when	triggered,
will	ask	the	/home	namespace	to	try	and	reconnect	to	the
Socket.IO	Server:

						namespace.login.on('loginSuccess',	()	=>	{	

										namespace.home.connect()	

						})	

9.	 Add	an	event	listener	for	loginError	event	that	will	display	an
error	when	invalid	credentials	are	provided:

						namespace.login.on('loginError',	err	=>	{	

										error.textContent	=	err.message	

						})	

10.	 Add	an	event	listener	for	submit	event	that	will	get	triggered
when	submitting	the	form.	It	will	emit	an	enter	event	with	data
containing	the	provided	username	and	password:

						loginForm.addEventListener('submit',	event	=>	{	

										const	body	=	new	FormData(loginForm)	

										namespace.login.emit('enter',	{	

														username:	body.get('username'),	

														password:	body.get('password'),	

										})	

										event.preventDefault()	

						})	

11.	 Save	the	file.

After	this,	build	an	ExpressJS	application	that	will	serve	the	Socket.IO
client	on	the	root	path	"/"	and	a	Socket.IO	server	that	will	include	the
logic	for	logging	the	user:

318

1.	 Create	a	new	file	named	io-express-srv.js
2.	 Initialize	a	new	ExpressJS	application	and	a	Socket.IO	server

application.	Also,	include	the	express-session	NPM	module:

						const	path	=	require('path')	

						const	express	=	require('express')	

						const	io	=	require('socket.io')()	

						const	expressSession	=	require('express-session')	

						const	app	=	express()	

3.	 Define	the	path	where	new	connections	to	Socket.IO	server	will
be	made:

						io.path('/socket.io')	

4.	 Define	an	ExpressJS	session	middleware	function	with	the
given	options:

						const	session	=	expressSession({	

										secret:	'MERN	Cookbook	Secret',	

										resave:	true,	

										saveUninitialized:	true,	

						})	

5.	 Define	a	Socket.IO	namespace	middleware	that	will	use	the
previously	created	session	middleware	to	generate	a	session
object:

						const	ioSession	=	(socket,	next)	=>	{	

										const	req	=	socket.request	

										const	res	=	socket.request.res	

										session(req,	res,	(err)	=>	{	

														next(err)	

														req.session.save()	

319

										})	

						}	

6.	 Define	two	namespaces,	one	for	/home	and	another	for	/login:

						const	home	=	io.of('/home')	

						const	login	=	io.of('/login')	

7.	 Define	an	in-memory	database	or	array	of	objects	that	will
contain	username	and	password	properties.	These	define	which
users	are	allowed	to	login:

						const	users	=	[

										{	username:	'huangjx',	password:	'cfgybhji'	},	

										{	username:	'johnstm',	password:	'mkonjiuh'	},	

										{	username:	'jackson',	password:	'qscwdvb'	},	

]	

8.	 Include	the	session	middleware	in	ExpressJS:

						app.use(session)	

9.	 Add	a	route	method	for	/home	path	that	will	serve	our	previously
created	HTML	document	containing	the	Socket.IO	client:

						app.get('/home',	(req,	res)	=>	{	

										res.sendFile(path.resolve(

														__dirname,	

														'io-express-cli.html',	

))	

						})	

320

10.	 Use	the	session	middleware	in	/home	Socket.IO	namespace.
Then,	check	for	every	new	socket	if	the	user	is	logged	in.	If	not,
forbid	the	user	to	connect	to	this	namespace:

						home.use(ioSession)	

						home.use((socket,	next)	=>	{	

										const	{	session	}	=	socket.request	

										if	(session.isLogged)	{	

														next()	

										}	

						})	

11.	 Once	a	connection	is	made	to	the	/home	namespace,	meaning
that	the	user	can	log	in,	emits	a	welcome	event	with	a	welcome
message	that	will	be	displayed	to	the	user:

						home.on('connection',	(socket)	=>	{	

										const	{	username	}	=	socket.request.session	

										socket.emit(

														'welcome',	

														`Welcome	${username}!,	you	are	logged	in!`,	

)	

						})	

12.	 Use	the	Session	Middleware	in	the	/login	Socket.IO	namespace.
Then,	when	the	client	emits	an	enter	event	with	the	provided
username	and	password,	it	verifies	the	profile	exists	in	the	users
array.	If	the	user	exists,	set	the	isLogged	property	to	true	and	the
username	property	to	the	current	user	that	has	logged	in:

						login.use(ioSession)	

						login.on('connection',	(socket)	=>	{	

										socket.on('enter',	(data)	=>	{	

														const	{	username,	password	}	=	data	

														const	{	session	}	=	socket.request	

														const	found	=	users.find((user)	=>	(

321

																		user.username	===	username	&&	

																		user.password	===	password	

))	

														if	(found)	{	

																		session.isLogged	=	true	

																		session.username	=	username	

																		socket.emit('loginSuccess')	

														}	else	{	

																		socket.emit('loginError',	{	

																						message:	'Invalid	Credentials',	

																		})	

														}	

										})	

						})	

13.	 Listen	on	port	1337	for	new	connections	and	attach	the
Socket.IO	server	to	it:

						io.attach(app.listen(1337,	()	=>	{	

										console.log(

														'HTTP	Server	and	Socket.IO	running	on	port	1337'	

)	

						}))	

14.	 Save	the	file
15.	 Open	a	new	Terminal	and	run:

						node	io-express-srv.js		

16.	 In	your	browser,	visit:

						http://localhost:1337/home

17.	 Login	with	valid	credentials.	For	example:

322

						*	Username:	johntm

						*	Password:	mkonjiuh

18.	 If	you	logged	in	successfully,	after	refreshing	the	page,	your
Socket.IO	client	application	will	still	be	able	to	connect	to	/home
and	you	will	see	a	welcome	message	every	time

323

How	it	works...
When	the	session	middleware	is	used	inside	ExpressJS,	after	modifying
the	session	object,	the	save	method	is	automatically	called	at	the	end	of
the	response.	However,	that	is	not	the	case	when	using	the	session
middleware	in	Socket.IO	namespaces,	that	is	why	we	call	the	save
method	manually	to	save	the	session	back	to	the	store.	In	our	case,	the
store	is	the	memory	where	the	sessions	are	kept	until	the	server	stops.

Forbidding	access	to	certain	namespaces	based	on	specific	conditions	is
possible	thanks	to	Socket.IO	namespace	middleware.	If	the	control	is
not	passed	to	the	next	handler,	then	the	connection	is	not	made.	That's
why	after	the	login	is	successful,	we	ask	the	/home	namespace	to	attempt
to	connect	again.

324

See	also
Chapter	2,	Building	a	Web	server	with	ExpressJS,	section	Writing
middleware	functions

325

Managing	State	with
Redux
In	this	chapter,	we	will	cover	the	following	recipes:

Defining	actions	and	action	creators

Defining	reducer	functions

Creating	a	Redux	store

Binding	action	creators	to	the	dispatch	method

Splitting	and	combining	reducers

Writing	Redux	store	enhancers

Time	traveling	with	Redux

Understanding	Redux	middleware

Dealing	with	asynchronous	data	flow

326

Technical	requirements
You	will	be	required	to	have	an	IDE,	Visual	Studio	Code,	Node.js	and
MongoDB.	You	will	also	need	to	install	Git,	in	order	use	the	Git
repository	of	this	book.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter05

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/mU9AjR

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter05
https://goo.gl/mU9AjR

327

Introduction
Redux	is	a	predictable	state	container	for	JavaScript	applications.	It
allows	developers	to	manage	the	state	of	their	applications	with	ease.
With	Redux,	the	state	is	immutable.	Thus,	it	is	possible	to	go	back	and
forth	to	the	next	or	previous	state	of	your	application.	Redux	is	bound
to	three	core	principles:

Single	source	of	truth:	All	the	state	of	your	application	must
be	stored	in	a	single	object	tree	within	one	single	store

State	is	read-only:	You	must	not	mutate	the	state	tree.	Only	by
dispatching	an	action	can	the	state	tree	change

Changes	are	made	with	pure	functions:	These	are	called
reducers,	which	are	functions	that	accept	the	previous	state	and
an	action	and	compute	a	new	state.	Reducers	must	never	mutate
the	previous	state	but	rather	always	return	a	new	one

Reducers	work	in	a	very	similar	way	to	how	the	Array.prototype.reduce
function	does.	The	reduce	method	executes	a	function	for	every	item	in
an	array	against	an	accumulator	to	reduce	it	to	a	single	value.	For
example:

const	a	=	5	

const	b	=	10	

const	c	=	[a,	b].reduce((accumulator,	value)	=>	{	

				return	accumulator	+	value	

},	0)	

The	resulting	value	in	variable	c	while	reducing	a	and	b	against	the
accumulator,	is	15	and	the	initial	value	is	0.	The	reducer	function	here	is:

328

(accumulator,	value)	=>	{	

				return	accumulator	+	value	

}	

Redux	reducers	are	written	in	a	similar	way	and	they	are	the	most
important	concept	of	Redux.	For	example:

const	reducer	=	(prevState,	action)	=>	newState	

In	this	chapter,	we	will	focus	on	learning	how	to	manage	simple	and
complex	state	trees	with	Redux.	You	will	learn	as	well	how	to	deal	with
asynchronous	data	flows.

329

Defining	actions	and
action	creators
Reducers	accept	an	action	object	that	describes	the	action	that	is	going
to	be	performed	and	decides	how	to	transform	the	state	based	on	this
action	object.

Actions	are	just	plain	objects	and	they	have	only	one	required	property
that	needs	to	be	present,	the	action-type.	For	instance:

const	action	=	{	

				type:	'INCREMENT_COUNTER',	

}	

We	can	also	provide	additional	properties	as	well.	For	instance:

const	action	=	{	

				type:	'INCREMENT_COUNTER',	

				incrementBy:	2,	

}	

Actions	creators	are	just	functions	that	return	actions,	for	instance:

const	increment	=	(incrementBy)	=>	({	

				type:	'INCREMENT_COUNTER',	

				incrementBy,	

})	

330

Getting	ready
In	this	recipe,	you	will	see	how	these	simple	Redux	concepts	can	be
applied	with	Array.prototype.reduce	to	decide	how	data	should	be
accumulated	or	reduced.

We	won't	need	the	Redux	library	yet	for	this	purpose.

331

How	to	do	it...
Build	a	small	JavaScript	application	that	will	increase	or	decreased	a
counter	based	on	the	action	provided.

1.	 Create	a	new	file	named	counter.js
2.	 Define	action-types	as	constants:

						const	INCREMENT_COUNTER	=	'INCREMENT_COUNTER'	

						const	DECREMENT_COUNTER	=	'DECREMENT_COUNTER'	

3.	 Define	two	action	creators	for	generating	two	kinds	of	actions
to	increment	and	decrement	the	counter:

						const	increment	=	(by)	=>	({	

										type:	INCREMENT_COUNTER,	

										by,	

						})	

						const	decrement	=	(by)	=>	({	

										type:	DECREMENT_COUNTER,	

										by,	

						})	

4.	 Initialize	the	initial	accumulator	to	0,	then	reduce	it	by	passing
several	actions.	The	reducer	function	will	decide	which	kind	of
action	to	perform	based	on	the	action	type:

						const	reduced	=	[

										increment(10),	

										decrement(5),	

332

										increment(3),	

].reduce((accumulator,	action)	=>	{	

										switch	(action.type)	{	

														case	INCREMENT_COUNTER:	

												return	accumulator	+	action.by	

														case	DECREMENT_COUNTER:	

																		return	accumulator	-	action.by	

														default:	

																		return	accumulator	

										}	

						},	0)	

5.	 Log	the	resulting	value:

						console.log(reduced)	

6.	 Save	the	file
7.	 Open	a	terminal	and	run:

							node	counter.js

		

7.	 Outputs:	8

333

How	it	works...
1.	 The	first	action	type	that	the	reducer	encounters	is	increment(10)

which	will	increment	the	accumulator	by	10.	Because	the	initial
value	of	the	accumulator	is	0,	the	next	current	value	will	be	10

2.	 The	second	action	type	tells	the	reducer	function	to	decrement
the	accumulator	by	5.	Thus,	the	accumulator's	value	will	be	5.

3.	 The	last	action	type	tells	the	reducer	function	to	increment	the
accumulator	by	3.	As	a	result,	the	accumulator's	value	will	be	8.

334

Defining	reducer
functions
Redux	reducers	are	pure	functions.	That	means,	they	have	no	side-
effects.	Given	the	same	arguments,	the	reducer	must	always	generate
the	same	shape	of	state.	Take	for	example	the	following	reducer
function:

const	reducer	=	(prevState,	action)	=>	{	

				if	(action.type	===	'INC')	{	

								return	{	counter:	prevState.counter	+	1	}	

				}	

				return	prevState	

}	

If	we	execute	this	function	providing	the	same	arguments,	the	result
will	always	be	the	same:

const	a	=	reducer(

			{	counter:	0	},	

			{	type:	'INC'	},	

)	//	Value	is	{	counter:	1	}		

const	b	=	reducer(

			{	counter:	0	},	

			{	type:	'INC'	},	

)	//	Value	is	{	counter:	1	}	

However,	take	into	account	that	even	though	the	returned	values	have	the	same	shape,
these	are	two	different	objects.	For	instance,	comparing	the	above:
console.log(a	===	b)	returns	false.

Impure	reducer	functions	prevent	your	application	state	from	being
predictable	and	make	difficult	to	reproduce	the	same	state.	For	instance:

const	impureReducer	=	(prevState	=	{},	action)	=>	{	

				if	(action.type	===	'SET_TIME')	{	

335

								return	{	time:	new	Date().toString()	}	

				}	

				return	prevState	

}	

If	we	execute	this	function:

const	a	=	impureReducer({},	{	type:	'SET_TIME'	})	

setTimeout(()	=>	{	

				const	b	=	impureReducer({},	{	type:	'SET_TIME'	})	

				console.log(

								a,	//	Output	may	be:	{time:	"22:10:15	GMT+0000"}	

								b,	//	Output	may	be:	{time:	"22:10:17	GMT+0000"}	

)	

},	2000)	

As	you	can	see,	after	executing	the	function	for	a	second	time	after	2
seconds,	we	get	a	different	result.	To	make	it	pure,	you	can	consider	re-
writing	the	previously	impure	reducer	as:

const	timeReducer	=	(prevState	=	{},	action)	=>	{	

				if	(action.type	===	'SET_TIME')	{	

								return	{	time:	action.time	}	

				}	

				return	prevState	

}	

Then,	you	can	safely	pass	a	time	property	inside	your	action	to	set	the
time:

const	currentTime	=	new	Date().toTimeString()	

const	a	=	timeReducer(

			{	time:	null	},	

			{	type:	'SET_TIME',	time:	currentTime	},	

)	

const	b	=	timeReducer(

			{	time:	null	},	

			{	type:	'SET_TIME',	time:	currentTime	},	

)	

console.log(a.time	===	b.time)	//	true	

This	approach	makes	your	state	predictable	and	the	state	is	easy	to
reproduce.	For	instance,	you	could	re-create	a	scenario	of	how	your

336

application	will	act	if	you	pass	the	time	property	for	any	time	in	morning
or	afternoon.

337

Getting	ready
Now	that	you	understand	the	concept	of	how	reducers	work,	in	this
recipe,	you	will	build	a	small	application	that	will	act	differently
according	to	the	state	change.

For	this	purpose,	you	won't	need	to	install	or	use	the	Redux	library	yet.

338

How	to	do	it...
Build	an	application	that	will	remind	you	what	kind	of	meal	you	should
get	according	to	your	local	time.	Manage	all	the	state	of	our	application
in	a	single	object	tree.	Also	provide	a	way	to	simulate	what	the
application	will	display	if	it's	00:00a.m	or	12:00p.m:

1.	 Create	a	new	file	named	meal-time.html.
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Breakfast	Time</title>	

										<script	

									src="https://unpkg.com/@babel/standalone/babel.min.js">		

								</script>	

						</head>	

						<body>	

										<h1>What	you	need	to	do:</h1>	

										<p>	

														Current	time:	

															

										</p>	

																<p	id="display-meal"></p>	

																<button	id="emulate-night">	

														Let's	pretend	is	00:00:00	

										</button>	

										<button	id="emulate-noon">	

														Let's	pretend	is	12:00:00	

										</button>	

										<script	type="text/babel">	

														//	Add	JavaScript	code	here	

										</script>	

						</body>	

						</html>	

339

3.	 Inside	the	script	tag	add	the	code	defined	in	the	next	steps,
starting	on	step	4.

4.	 Define	a	variable	state	that	will	contain	all	the	state	tree	and
later	the	next	state:

						let	state	=	{	

										kindOfMeal:	null,	

										time:	null,	

						}	

5.	 Create	a	reference	to	the	HTML	elements	that	we	will	use	to
display	data	or	add	event	listeners:

						const	meal	=	document.getElementById('display-meal')	

						const	time	=	document.getElementById('display-time')	

						const	btnNight	=	document.getElementById('emulate-night')	

						const	btnNoon	=	document.getElementById('emulate-noon')	

6.	 Define	two	action	types:

						const	SET_MEAL	=	'SET_MEAL'	

						const	SET_TIME	=	'SET_TIME'	

7.	 Define	an	action	creator	for	setting	the	kind	of	meal	the	user
should	have:

						const	setMeal	=	(kindOfMeal)	=>	({	

										type:	SET_MEAL,	

										kindOfMeal,	

						})	

8.	 Define	an	action	creator	for	setting	the	time:

340

						const	setTime	=	(time)	=>	({	

										type:	SET_TIME,	

										time,	

						})	

9.	 Define	a	reducer	function	that	will	compute	a	new	state	when
an	action	is	dispatched:

						const	reducer	=	(prevState	=	state,	action)	=>	{	

										switch	(action.type)	{	

														case	SET_MEAL:	

																		return	Object.assign({},	prevState,	{	

																						kindOfMeal:	action.kindOfMeal,	

																		})	

														case	SET_TIME:	

																		return	Object.assign({},	prevState,	{	

																						time:	action.time,	

																		})	

														default:	

																		return	prevState	

										}	

						}	

10.	 Add	a	function	that	we	will	call	when	the	state	changes,	so	we
can	update	our	view:

						const	onStateChange	=	(nextState)	=>	{	

										const	comparison	=	[

														{	time:	'23:00:00',	info:	'Too	late	for	dinner!'	},	

														{	time:	'18:00:00',	info:	'Dinner	time!'	},	

														{	time:	'16:00:00',	info:	'Snacks	time!'	},	

														{	time:	'12:00:00',	info:	'Lunch	time!'	},	

														{	time:	'10:00:00',	info:	'Branch	time!'	},	

														{	time:	'05:00:00',	info:	'Breakfast	time!'	},	

														{	time:	'00:00:00',	info:	'Too	early	for	breakfast!'	

},	

]	

										time.textContent	=	nextState.time	

										meal.textContent	=	comparison.find((condition)	=>	(

														nextState.time	>=	condition.time	

)).info	

341

						}	

11.	 Define	a	dispatch	function	that	will	generate	a	new	state	tree	by
passing	the	current	state	and	an	action	to	the	reducer.	Then,	it
will	call	the	onChangeState	function	to	notify	your	application	that
the	state	has	changed:

						const	dispatch	=	(action)	=>	{	

										state	=	reducer(state,	action)	

										onStateChange(state)	

						}	

12.	 Add	an	event	listener	for	the	button	that	will	emulate	that	the
time	is	00:00a.m:

						btnNight.addEventListener('click',	()	=>	{	

										const	time	=	new	Date('1/1/1	00:00:00')	

										dispatch(setTime(time.toTimeString()))	

						})	

13.	 Add	an	event	listener	for	the	button	that	will	emulate	that	the
time	is	12:00p.m:

						btnNoon.addEventListener('click',	()	=>	{	

										const	time	=	new	Date('1/1/1	12:00:00')	

										dispatch(setTime(time.toTimeString()))	

						})	

14.	 Once	the	script	is	running,	dispatch	an	action	with	the	current
time	for	the	view	to	update:

						dispatch(setTime(new	Date().toTimeString()))	

342

15.	 Save	the	file.

343

Let's	test	it...
To	see	your	previous	work	in	action:

1.	 Open	the	meal-time.html	file	in	your	web	browser.	You	can	do	so
by	double-clicking	on	the	file,	or	right-clicking	on	the	file	and
choosing	Open	with....

2.	 You	should	be	able	to	see	your	current	local	time	and	a
message	stating	what	kind	of	meal	you	should	have.	For
instance,	if	your	local	time	is	20:42:35	GMT+0800	(CST),	you	should
see	Dinner	time!

3.	 Click	on	the	button	"Let's	pretend	is	00:00:00"	to	see	what	your
application	would	display	if	the	time	was	00:00a.m.

4.	 The	same	way,	click	on	the	button	"Let's	pretend	is	12:00:00"	to
see	what	your	application	would	display	if	the	time	was
12:00p.m.

344

How	it	works...
We	can	summarize	our	application	like	the	following	to	understand	how
it	works:

1.	 Action	types	SET_MEAL	and	SET_TIME	were	defined.
2.	 Two	action	creators	were	defined:

1.	 setMeal	which	generates	an	action	with	the	SET_MEAL
action	type	and	a	kindOfMeal	property	with	the	provided
argument

2.	 setTime	which	generates	an	action	with	the	SET_TIME
action	type	and	a	time	property	with	the	provided
argument

3.	 A	reducer	function	was	defined:

1.	 For	the	action	type	SET_MEAL,	computes	a	new	state	with
a	new	kindOfMeal	property

2.	 For	the	action	type	SET_TIME,	computes	a	new	state	with
a	new	time	property

4.	 We	defined	a	function	that	will	get	called	when	the	state	tree
changes.	Inside	the	function,	we	updated	the	view	according	to
the	new	state.

5.	 A	dispatch	function	was	defined	that	calls	the	reducer	function
providing	the	previous	state	and	an	action	object	to	generate	a
new	state.

345

Creating	a	Redux	store
In	the	previous	recipes,	we	have	seen	how	to	define	reducers	and
actions.	We	have	also	seen	how	to	create	a	dispatch	function	to	dispatch
actions	for	the	reducers	to	update	the	state.	The	store	is	an	object	that
provides	a	small	API	to	put	all	of	that	together.

The	redux	module	exposes	the	createStore	method	which	we	can	use	to
create	a	store.	It	has	the	following	signature:

createStore(reducer,	preloadedState,	enhancer)	

The	two	last	arguments	are	optional.	For	example,	creating	a	store	with
a	single	reducer	could	look	like	this:

const	TYPE	=	{	

				INC_COUNTER:	'INC_COUNTER',	

				DEC_COUNTER:	'DEC_COUNTER',	

}	

const	initialState	=	{	

				counter:	0,	

}	

const	reducer	=	(state	=	initialState,	action)	=>	{	

				switch	(action.type)	{	

								case	TYPE.INC_COUNTER:		

												return	{	counter:	state.counter	+	1	}	

								case	TYPE.DEC_COUNTER:		

												return	{	counter:	state.counter	-	1	}	

								default:		

												return	state	

				}	

}	

const	store	=	createStore(reducer)	

Calling	createStore	will	expose	four	methods:

346

store.dispatch(action):	Where	action	is	an	object	that	contains	at
least	one	property	named	type	that	specifies	the	action	type

store.getState():	Returns	the	whole	state	tree

store.subscribe(listener):	Where	listener	is	a	callback	function
that	will	get	triggered	whenever	the	state	tree	changes.	Several
listeners	can	be	subscribed

store.replaceReducer(reducer):	Replaces	the	current	Reducer
function	with	a	new	one

347

Getting	ready
In	this	recipe,	you	will	re-build	the	application	that	you	built	in	the
previous	recipe.	However,	this	time	you	will	use	Redux.	Before	you
start,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"redux":	"4.0.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	terminal	and	running:

npm	install

		

348

How	to	do	it...
First,	build	a	small	ExpressJS	server	application	whose	sole	purpose
will	be	to	serve	an	HTML	file	and	the	Redux	module:

1.	 Create	a	new	file	named	meal-time-server.js
2.	 Include	the	ExpressJS	and	path	module	and	initialize	a	new

ExpressJS	Application:

						const	express	=	require('express')	

						const	path	=	require('path')	

						const	app	=	express()	

3.	 Serve	the	Redux	library	on	/lib	path.	Make	sure	that	the	path
points	to	the	node_modules	folder:

						app.use('/lib',	express.static(

										path.join(__dirname,	'node_modules',	'redux',	'dist')	

))	

4.	 Serve	the	client	application	on	the	root	path	/:

						app.get('/',	(req,	res)	=>	{	

										res.sendFile(path.join(

														__dirname,	

														'meal-time-client.html',	

))	

						})	

349

5.	 Listen	for	new	connections	on	port	1337:

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

6.	 Save	the	file

Now,	build	the	client	application	using	Redux	following	the	next	steps:

1.	 Create	a	new	file	named	meal-time-client.html.
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Meal	Time	with	Redux</title>	

										<script	

										src="https://unpkg.com/@babel/standalone/babel.min.js">

									</script>	

										<script	src="/lib/redux.js"></script>	

						</head>	

						<body>	

										<h1>What	you	need	to	do:</h1>	

										<p>	

														Current	time:	

															

										</p>	

										<p	id="display-meal"></p>	

										<button	id="emulate-night">	

														Let's	pretend	is	00:00:00	

										</button>	

										<button	id="emulate-noon">	

														Let's	pretend	is	12:00:00	

										</button>	

										<script	type="text/babel">	

														//	Add	JavaScript	code	here	

										</script>	

						</body>	

350

						</html>	

3.	 Inside	the	script	tag,	add	the	code	for	the	next	steps,	starting
from	step	4.

4.	 Extract	the	createStore	method	from	the	Redux	library:

						const	{	createStore	}	=	Redux	

5.	 Define	the	initial	state	of	your	application:

						const	initialState	=	{	

										kindOfMeal:	null,	

										time:	null,	

						}	

6.	 Keep	a	reference	of	the	HTML	DOM	elements	that	will	be	used
to	display	the	state	or	interact	with	the	application:

						const	meal	=	document.getElementById('display-meal')	

						const	time	=	document.getElementById('display-time')	

						const	btnNight	=	document.getElementById('emulate-night')	

						const	btnNoon	=	document.getElementById('emulate-noon')	

7.	 Define	two	action	types:

						const	SET_MEAL	=	'SET_MEAL'	

						const	SET_TIME	=	'SET_TIME'	

8.	 Define	two	action	creators:

351

						const	setMeal	=	(kindOfMeal)	=>	({	

										type:	SET_MEAL,	

										kindOfMeal,	

						})	

						const	setTime	=	(time)	=>	({	

										type:	SET_TIME,	

										time,	

						})	

9.	 Define	the	reducer	that	will	transform	the	state	when	SET_TIME
and/or	SET_TIME	action	types	are	dispatched:

						const	reducer	=	(prevState	=	initialState,	action)	=>	{	

										switch	(action.type)	{	

														case	SET_MEAL:	

																		return	{...prevState,	

																						kindOfMeal:	action.kindOfMeal,	

																		}	

														case	SET_TIME:	

																		return	{...prevState,	

																						time:	action.time,	

																		}	

														default:	

																		return	prevState	

										}	

						}	

10.	 Create	a	new	Redux	Store:

						const	store	=	createStore(reducer)	

11.	 Subscribe	a	callback	function	to	the	changes	of	the	store.
Whenever	the	store	changes	this	callback	will	be	triggered	and
it	will	update	the	view	according	to	the	changes	in	the	store:

						store.subscribe(()	=>	{	

										const	nextState	=	store.getState()	

352

										const	comparison	=	[

														{	time:	'23:00:00',	info:	'Too	late	for	dinner!'	},	

														{	time:	'18:00:00',	info:	'Dinner	time!'	},	

														{	time:	'16:00:00',	info:	'Snacks	time!'	},	

														{	time:	'12:00:00',	info:	'Lunch	time!'	},	

														{	time:	'10:00:00',	info:	'Brunch	time!'	},	

														{	time:	'05:00:00',	info:	'Breakfast	time!'	},	

														{	time:	'00:00:00',	info:	'Too	early	for	breakfast!'	

},	

]	

										time.textContent	=	nextState.time	

										meal.textContent	=	comparison.find((condition)	=>	(

														nextState.time	>=	condition.time	

)).info	

						})	

12.	 Add	an	event	listener	for	the	click	event	for	our	button	that	will
dispatch	the	SET_TIME	action	type	to	set	the	time	to	00:00:00:

						btnNight.addEventListener('click',	()	=>	{	

										const	time	=	new	Date('1/1/1	00:00:00')	

										store.dispatch(setTime(time.toTimeString()))	

						})	

13.	 Add	an	event	listener	for	the	click	event	for	our	button	that	will
dispatch	the	SET_TIME	action	type	to	set	the	time	to	12:00:00:

						btnNoon.addEventListener('click',	()	=>	{	

										const	time	=	new	Date('1/1/1	12:00:00')	

										store.dispatch(setTime(time.toTimeString()))	

						})	

14.	 When	the	application	is	first	started,	dispatch	an	action	to	set
the	time	to	the	current	local	time:

						store.dispatch(setTime(new	Date().toTimeString()))	

353

15.	 Save	the	file

354

Let's	test	it...
To	see	the	previous	work	in	action:

1.	 Open	a	new	terminal	and	run:

						node	meal-time-server.js

2.	 In	your	web	browser,	visit:

				

							http://localhost:1337/

3.	 You	should	be	able	to	see	your	current	local	time	and	a
message	stating	what	kind	of	meal	you	should	have.	For
instance,	if	your	local	time	is	20:42:35	GMT+0800	(CST),	you	should
see	Dinner	time!

4.	 Click	on	the	button	"Let's	pretend	is	00:00:00"	to	see	what	your
application	would	display	if	the	time	was	00:00a.m.

5.	 The	same	way,	click	on	the	"Let's	pretend	is	12:00:00"	button	to
see	what	your	application	would	display	if	the	time	was
12:00p.m.

355

There's	more
You	can	use	the	ES6	spread	operator	instead	of	Object.assign	to	merge
your	previous	state	with	the	next	one,	for	instance,	we	re-wrote	the
reducer	function	of	the	previous	recipe:

const	reducer	=	(prevState	=	initialState,	action)	=>	{	

				switch	(action.type)	{	

								case	SET_MEAL:	

												return	Object.assign({},	prevState,	{	

																kindOfMeal:	action.kindOfMeal,	

												})	

								case	SET_TIME:	

												return	Object.assign({},	prevState,	{	

																time:	action.time,	

												})	

								default:	

												return	prevState	

				}	

}	

We	rewrote	it	as	the	following:

const	reducer	=	(prevState	=	initialState,	action)	=>	{	

				switch	(action.type)	{	

								case	SET_MEAL:	

												return	{...prevState,	

																kindOfMeal:	action.kindOfMeal,	

												}	

								case	SET_TIME:	

												return	{...prevState,	

																time:	action.time,	

												}	

								default:	

												return	prevState	

				}	

}	

This	could	make	the	code	more	readable.

356

Binding	action	creators
to	the	dispatch	method
Actions	creators	are	just	functions	that	generate	action	objects	which
can	later	be	used	to	dispatch	actions	using	the	dispatch	method.	Take	for
example	the	following	code:

const	TYPES	=	{	

				ADD_ITEM:	'ADD_ITEM',	

				REMOVE_ITEM:	'REMOVE_ITEM',	

}	

const	actions	=	{	

				addItem:	(name,	description)	=>	({	

								type:	TYPES.ADD_ITEM,	

								payload:	{	name,	description	},	

				}),	

				removeItem:	(id)	=>	({	

								type:	TYPES.REMOVE_ITEM,	

								payload:	{	id	},	

				})	

}	

module.exports	=	actions	

Later,	somewhere	in	your	application,	you	can	dispatch	these	actions
using	the	dispatch	method:

dispatch(actions.addItem('Little	Box',	'Cats'))	

dispatch(actions.removeItem(123))	

However,	as	you	can	see,	calling	the	dispatch	method	every	time	seems
like	a	repeated	and	unnecessary	step.	You	could	simply	wrap	the	action
creators	around	the	dispatch	function	itself	like	this:

const	actions	=	{	

				addItem:	(name,	description)	=>	dispatch({	

357

								type:	TYPES.ADD_ITEM,	

								payload:	{	name,	description	},	

				}),	

				removeItem:	(id)	=>	dispatch({	

								type:	TYPES.REMOVE_ITEM,	

								payload:	{	id	},	

				})	

}	

module.exports	=	actions	

Even	though	this	seems	like	a	good	solution,	there	is	a	problem.	It
means,	you	would	need	to	create	the	store	first,	then	define	your	action
creators	binding	them	to	the	dispatch	method.	In	addition,	it	would	be
difficult	to	maintain	the	action	creators	in	a	separate	file	since	they
depend	on	the	dispatch	method	to	be	present.	There	is	a	solution
provided	by	the	Redux	module,	a	helper	method	called	bindActionCreators
which	accepts	two	arguments.	The	first	argument	is	an	object	with
keys,	which	represent	the	name	of	an	action	creator,	and	values,	which
represent	a	function	that	returns	an	action.	The	second	argument	is
expected	to	be	the	dispatch	function:

bindActionCreators(actionCreators,	dispatchMethod)	

This	helper	method	will	map	all	the	action	creators	to	the	dispatch
method.	For	instance,	we	could	re-write	the	previous	example	as	the
following:

const	store	=	createStore(reducer)	

const	originalActions	=	require('./actions')	

const	actions	=	bindActionCreators(

				originalActions,	

				store.dispatch,	

)	

Then,	later	somewhere	in	your	application,	you	can	call	these	methods
without	wrapping	them	around	the	dispatch	method:

actions.addItem('Little	Box',	'Cats')	

actions.removeItem(123)	

As	you	can	see,	our	bound	action	creators	look	more	like	regular

358

functions	now.	In	fact,	by	destructuring	the	actions	object,	you	can	use
only	the	methods	you	need.	For	instance:

const	{	

				addItem,	

				removeItem,	

}	=	bindActionCreators(

				originalActions,		

				store.dispatch,	

)	

Then,	you	can	call	them	like	this:

addItem('Little	Box',	'Cats')	

removeItem(123)	

359

Getting	ready
In	this	recipe,	you	will	build	a	simple	To-do	application	and	you	will
use	the	concepts	that	you	just	have	learned	about	binding	action
creators.	First,	create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"redux":	"4.0.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

360

How	to	do	it...
To	build	your	To-do	application,	for	the	purpose	of	this	recipe,	define
only	one	action	creator	and	use	bindActionCreators	to	bind	it	to	the	dispatch
method.

First,	build	a	small	ExpressJS	application	that	will	serve	the	HTML	file
containing	the	To-do	client	application	which	we	will	build	after:

1.	 Create	a	new	file	named	bind-server.js
2.	 Add	the	following	code:

						const	express	=	require('express')	

						const	path	=	require('path')	

						const	app	=	express()	

						app.use('/lib',	express.static(

										path.join(__dirname,	'node_modules',	'redux',	'dist')	

))	

						app.get('/',	(req,	res)	=>	{	

										res.sendFile(path.join(

														__dirname,	

														'bind-index.html',	

))	

						})	

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

3.	 Save	the	file

Next,	build	the	To-do	application	in	an	HTML	file:

1.	 Create	a	new	file	named	bind-index.html.

361

2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Binding	action	creators</title>	

										<script	

											src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

										<script	src="/lib/redux.js"></script>	

						</head>	

						<body>	

										<h1>List:</h1>	

										<form	id="item-form">	

														<input	id="item-input"	name="item"	/>	

										</form>	

										<ul	id="list">	

										<script	type="text/babel">	

														//	Add	code	here	

										</script>	

						</body>	

						</html>	

3.	 Inside	the	script	tag,	add	the	code	in	the	following	steps,
starting	from	step	4.

4.	 Keep	a	reference	to	the	HTML	DOM	element	that	will	be	used
in	the	application:

						const	form	=	document.querySelector('#item-form')	

						const	input	=	document.querySelector('#item-input')	

						const	list	=	document.querySelector('#list')	

5.	 Define	the	initial	state	of	your	application:

						const	initialState	=	{	

										items:	[],	

						}	

362

6.	 Define	an	action	type:

						const	TYPE	=	{	

										ADD_ITEM:	'ADD_ITEM',	

						}	

7.	 Define	an	action	creator:

						const	actions	=	{	

										addItem:	(text)	=>	({	

														type:	TYPE.ADD_ITEM,	

														text,	

										})	

						}	

8.	 Define	a	reducer	function	that	will	add	a	new	item	to	the	list
whenever	the	ADD_ITEM	action	type	is	dispatched.	The	state	will
keep	only	5	items:

						const	reducer	=	(state	=	initialState,	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.ADD_ITEM:	return	{	

																		items:	[...state.items,	action.text].splice(-5)	

														}	

														default:	return	state	

										}	

						}	

9.	 Create	a	store	and	bind	the	dispatch	function	to	the	action
creator:

						const	{	createStore,	bindActionCreators	}	=	Redux	

						const	store	=	createStore(reducer)	

						const	{	addItem	}	=	bindActionCreators(

										actions,		

363

										store.dispatch,	

)	

10.	 Subscribe	to	the	store	and	whenever	the	state	changes	add	a
new	item	to	the	list.	If	an	item	was	already	defined,	we	will	re-
use	it	instead	of	creating	a	new	one:

						store.subscribe(()	=>	{	

										const	{	items	}	=	store.getState()	

										items.forEach((itemText,	index)	=>	{	

														const	li	=	(

																		list.children.item(index)	||	

																		document.createElement('li')	

)	

														li.textContent	=	itemText	

														list.insertBefore(li,	list.children.item(0))	

										})	

						})	

11.	 Add	an	event	listener	to	the	form	for	the	submit	event.	This	way,
we	can	get	the	input	value	and	dispatch	an	action:

						form.addEventListener('submit',	(event)	=>	{	

										event.preventDefault()	

										addItem(input.value)	

						})	

12.	 Save	the	file.

364

Let's	test	it...
To	see	the	previous	work	in	action:

1.	 Open	a	new	Terminal	and	run:

						node	bind-server.js

2.	 In	your	browser,	visit:

					http://localhost:1337/

3.	 Type	something	in	the	input	box	and	press	Enter.	A	new	item
should	appear	in	the	list.

4.	 Try	to	add	more	than	five	items	to	the	list.	The	last	one
displayed	will	be	removed	and	only	five	items	are	kept	on	the
view.

365

Splitting	and	combining
reducers
As	your	application	grows,	you	probably	wouldn't	want	to	write	all	the
logic	for	how	the	state	of	your	application	needs	to	be	transformed	in	a
simple	reducer	function.	What	you	would	probably	want	is	to	write
smaller	reducers	that	specialize	in	managing	independent	parts	of	the
state.

Take	for	example	the	following	reducer	function:

const	initialState	=	{	

				todoList:	[],	

				chatMsg:	[],	

}	

const	reducer	=	(state	=	initialState,	action)	=>	{	

				switch	(action.type)	{	

								case	'ADD_TODO':	return	{	

												...state,	

												todoList:	[

																...state.todoList,	

																{	

																				title:	action.title,	

																				completed:	action.completed,	

																},	

],	

								}	

								case	'ADD_CHAT_MSG':	return	{	

												...state,	

												chatMsg:	[

																...state.chatMsg,	

																{	

																				from:	action.id,	

																				message:	action.message,	

																},	

],	

								}	

								default:	

366

												return	state	

				}	

}	

You	have	two	properties	that	manage	the	state	of	two	different	parts	of
an	application.	One	manages	the	state	of	a	Todo,	list	while	the	other
manages	the	Chat	messages.	You	could	split	this	reducer	into	two
reducer	functions,	where	each	manages	one	slice	of	the	state,	for
instance:

const	initialState	=	{	

				todoList:	[],	

				chatMsg:	[],	

}	

const	todoListReducer	=	(state	=	initialState.todoList,	action)	=>	{		

				switch	(action.type)	{	

								case	'ADD_TODO':	return	state.concat([

												{	

																title:	action.title,	

																completed:	action.completed,	

												},	

])	

								default:	return	state	

				}	

}	

const	chatMsgReducer	=	(state	=	initialState.chatMsg,	action)	=>	{	

				switch	(action.type)	{	

								case	'ADD_CHAT_MSG':	return	state.concat([

												{	

																from:	action.id,	

																message:	action.message,	

												},	

])	

								default:	return	state	

				}	

}	

However,	because	createStore	method	accepts	only	one	reducer	as	the
first	argument,	you	would	need	to	combine	them	into	a	single	reducer:

const	reducer	=	(state	=	initialState,	action)	=>	{	

				return	{	

								todoList:	todoListReducer(state.todoList,	action),	

								chatMsg:	chatMsgReducer(state.chatMsg,	action),	

				}	

}	

367

In	this	way,	we	are	able	to	split	our	reducers	into	smaller	reducers	that
specialize	in	managing	only	one	slice	of	the	state,	and	later	combine
them	together	into	a	single	reducer	function.

Redux	provides	a	helper	method	named	combineReducers	that	allows	you
to	combine	reducers	in	a	similar	way	to	what	we	just	did	but	without
having	to	repeat	a	lot	of	code;	for	instance,	we	could	rewrite	the
previous	way	of	combining	reducers	like	this:

const	reducer	=	combineReducers({	

				todoList:	todoListReducer,	

				chatMsg:	chatMsgReducer,	

})	

The	combineReducers	method	is	a	higher-order	reducer	function.	It	accepts
an	object	mapping	specifies	keys	to	a	certain	slice	of	the	state	managed
by	a	specific	reducer	function	and	returns	a	new	reducer	function.	If	you
run	the	following	code,	for	instance:

console.log(JSON.stringify(

				reducer(initialState,	{	type:	null	}),	

				null,	2,	

))	

You	will	see	that	the	generated	shape	of	the	state	looks	like	this:

{	

				"todoList":	[],	

				"chatMsg":	[],	

}	

We	can	try	as	well	if	our	combined	reducers	are	working	and	managing
only	the	part	of	the	state	assigned	to	them.	For	instance:

console.log(JSON.stringify(

				reducer(

								initialState,	

								{	

												type:	'ADD_TODO',	

												title:	'This	is	an	example',	

368

												completed:	false,	

								},	

),	

				null,	2,	

))	

The	output	should	display	the	generated	state	as	the	following:

{	

				"todoList":	[

								{	

												"title":	"This	is	an	example",	

												"completed":	false,	

								},	

],	

				"chatMsg":	[],	

}	

This	shows	that	each	reducer	is	managing	only	the	slice	of	the	state
assigned	to	them.

369

Getting	ready
In	this	recipe,	you	will	recreate	the	To-do	application	as	in	the	pervious
recipe.	However,	you	will	add	other	functionalities	such	as	remove	and
toggle	a	To-do	item.	You	will	define	other	state	of	your	application	that
will	be	managed	by	separate	reducer	functions.	First,	create	a	new
package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"redux":	"4.0.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

370

How	to	do	it...
First,	build	a	small	ExpressJS	server	application	that	will	serve	the
client	application	and	the	Redux	library	installed	in	node_modules:

1.	 Create	a	new	file	named	todo-time.js
2.	 Add	the	following	code:

						const	express	=	require('express')	

						const	path	=	require('path')	

						const	app	=	express()	

						app.use('/lib',	express.static(

										path.join(__dirname,	'node_modules',	'redux',	'dist')	

))	

						app.get('/',	(req,	res)	=>	{	

										res.sendFile(path.join(

														__dirname,	

														'todo-time.html',	

))	

						})	

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

3.	 Save	the	file

Next,	build	the	To-do	client	application.	Also	include	a	separate	reducer
to	manage	state	for	the	current	local	time	and	a	random	lucky	number
generator:

1.	 Create	a	new	file	named	todo-time.html
2.	 Add	the	following	HTML	code:

371

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

									<meta	charset="UTF-8">	

										<title>Lucky	Todo</title>	

										<script	

											src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

										<script	src="/lib/redux.js"></script>	

						</head>	

						<body>	

										<h1>List:</h1>	

										<form	id="item-form">	

														<input	id="item-input"	name="item"	/>	

										</form>	

										<ul	id="list">	

										<script	type="text/babel">	

														//	Add	code	here	

										</script>	

						</body>	

						</html>	

3.	 Inside	the	script	tag	add	the	JavaScript	code	following	the	next
steps,	starting	from	step	4

4.	 Keep	a	reference	of	the	HTML	elements	that	we	will	use	to
display	data	or	interact	with	the	application:

						const	timeElem	=	document.querySelector('#current-time')	

						const	formElem	=	document.querySelector('#todo-form')	

						const	listElem	=	document.querySelector('#todo-list')	

						const	inputElem	=	document.querySelector('#todo-input')	

						const	luckyElem	=	document.querySelector('#lucky-number')	

5.	 Get	the	createStore	method	and	helper	methods	from	the	Redux
library:

						const	{	

										createStore,	

										combineReducers,	

										bindActionCreators,	

372

						}	=	Redux	

6.	 Set	action	types:

						const	TYPE	=	{	

										SET_TIME:	'SET_TIME',	

										SET_LUCKY_NUMBER:	'SET_LUCKY_NUMBER',	

										ADD_TODO:	'ADD_TODO',	

										REMOVE_TODO:	'REMOVE_TODO',	

										TOGGLE_COMPLETED_TODO:	'TOGGLE_COMPLETED_TODO',	

						}	

7.	 Define	action	creators:

						const	actions	=	{	

										setTime:	(time)	=>	({	

														type:	TYPE.SET_TIME,	

														time,	

										}),	

										setLuckyNumber:	(number)	=>	({	

														type:	TYPE.SET_LUCKY_NUMBER,	

														number,	

										}),	

										addTodo:	(id,	title)	=>	({	

														type:	TYPE.ADD_TODO,	

														title,	

														id,	

										}),	

										removeTodo:	(id)	=>	({	

														type:	TYPE.REMOVE_TODO,	

														id,	

										}),	

										toggleTodo:	(id)	=>	({	

														type:	TYPE.TOGGLE_COMPLETED_TODO,	

														id,	

										}),	

						}	

8.	 Define	a	reducer	function	to	manage	the	slice	of	state	that
keeps	the	time:

373

						const	currentTime	=	(state	=	null,	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.SET_TIME:	return	action.time	

														default:	return	state	

										}	

						}	

9.	 Define	a	reducer	function	to	manage	the	slice	of	state	that
keeps	a	lucky	number	that	will	be	generated	every	time	the	user
loads	your	application:

						const	luckyNumber	=	(state	=	null,	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.SET_LUCKY_NUMBER:	return	action.number	

														default:	return	state	

										}	

						}	

10.	 Define	a	reducer	function	to	manage	the	slice	of	state	that
keeps	an	array	of	To-do	items:

						const	todoList	=	(state	=	[],	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.ADD_TODO:	return	state.concat([

																		{	

																						id:	String(action.id),	

																						title:	action.title,	

																						completed:	false,	

																		}	

])	

														case	TYPE.REMOVE_TODO:	return	state.filter(

																		todo	=>	todo.id	!==	action.id	

)	

														case	TYPE.TOGGLE_COMPLETED_TODO:	return	state.map(

																		todo	=>	(

																						todo.id	===	action.id	

																										?	{	

																														...todo,	

																														completed:	!todo.completed,	

																										}	

																										:	todo	

374

)	

)	

														default:	return	state	

										}	

						}	

11.	 Combine	all	reducers	into	a	single	one:

						const	reducer	=	combineReducers({	

										currentTime,	

										luckyNumber,	

										todoList,	

						})	

12.	 Create	a	store:

						const	store	=	createStore(reducer)	

13.	 Bind	all	actions	creators	to	the	dispatch	method	of	the	store:

						const	{	

										setTime,	

										setLuckyNumber,	

										addTodo,	

										removeTodo,	

										toggleTodo,	

						}	=	bindActionCreators(actions,	store.dispatch)	

14.	 Subscribe	a	listener	to	the	store	that	will	update	the	HTML
element,	that	will	hold	the	time,	whenever	the	state	changes:

						store.subscribe(()	=>	{	

										const	{	currentTime	}	=	store.getState()	

										timeElem.textContent	=	currentTime	

						})	

375

15.	 Subscribe	a	listener	to	the	store	that	will	update	the	HTML
element,	that	will	display	a	lucky	number,	whenever	the	state
changes:

						store.subscribe(()	=>	{	

										const	{	luckyNumber	}	=	store.getState()	

										luckyElem.textContent	=	`Your	lucky	number	is:	

${luckyNumber}`	

						})	

16.	 Subscribe	a	listener	to	the	store	that	will	update	the	HTML
element	that	will	display	the	list	of	To-do	items,	whenever	the
state	changes.	Set	the	attribute	draggable	for	the	li	HTML
elements	to	allow	the	user	to	drag	and	drop	the	items	on	the
view:

						store.subscribe(()	=>	{	

										const	{	todoList	}	=	store.getState()	

										listElem.innerHTML	=	''	

										todoList.forEach(todo	=>	{	

														const	li	=	document.createElement('li')	

														li.textContent	=	todo.title	

														li.dataset.id	=	todo.id	

														li.setAttribute('draggable',	true)	

														if	(todo.completed)	{	

																		li.style	=	'text-decoration:	line-through'	

														}	

														listElem.appendChild(li)	

										})	

						})	

17.	 Add	an	event	listener	for	the	click	event	on	the	list	HTML
element	that	will	toggle	a	To-do	item's	completed	property
whenever	the	item	is	clicked:

376

						listElem.addEventListener('click',	(event)	=>	{	

										toggleTodo(event.target.dataset.id)	

						})	

18.	 Add	an	event	listener	for	the	drag	event	on	the	list	HTML
element	that	will	remove	a	To-do	Item	when	this	one	is	dragged
outside	of	the	list:

						listElem.addEventListener('drag',	(event)	=>	{	

										removeTodo(event.target.dataset.id)	

						})	

19.	 Add	an	event	listener	for	the	submit	event	on	the	form	that
contains	an	input	HTML	element	that	will	dispatch	a	new
action	to	add	a	new	To-do	item:

						let	id	=	0	

						formElem.addEventListener('submit',	(event)	=>	{	

										event.preventDefault()	

										addTodo(++id,	inputElem.value)	

										inputElem.value	=	''	

						})	

20.	 When	the	page	loads	for	the	first	time,	dispatch	an	action	to	set
a	lucky	number	and	define	a	function	that	will	get	triggered
every	second	to	update	the	current	time	in	the	state	of	the
application:

						setLuckyNumber(Math.ceil(Math.random()	*	1024))	

						setInterval(()	=>	{	

										setTime(new	Date().toTimeString())	

						},	1000)	

21.	 Save	the	file

377

Let's	test	it...
To	see	the	previous	work	in	action:

1.	 Open	a	new	Terminal	and	run:

						node	todo-time.js

2.	 In	your	browser,	visit:

						http://localhost:1337/

3.	 Introduce	something	in	the	input	box	and	press	enter.	A	new
item	should	appear	in	the	list.

4.	 Click	on	one	of	the	items	that	you	have	added	to	mark	it	as
completed.

5.	 Click	once	again	on	one	of	the	items	marked	as	completed	to
mark	it	as	not	completed.

6.	 Click	and	drag	one	of	the	items	outside	of	the	list	to	remove	it
from	the	To-do	list.

378

How	it	works...
1.	 Three	reducer	functions	were	defined	to	independently	manage

each	slice	of	the	state	that	has	the	following	shape:

						{	

										currentTime:	String,	

										luckyNumber:	Number,	

										todoList:	Array.of({	

														id:	Number,	

														title:	String,	

														completed:	Boolean,	

										}),	

						}	

2.	 We	used	the	combineReducers	helper	method	from	the	Redux
library	to	combine	those	three	reducers	into	a	single	one

3.	 Then,	a	store	was	created	providing	the	combined	reducer
function

4.	 For	convenience,	we	subscribed	three	listener	functions	that	get
triggered	whenever	the	state	changes	to	update	the	HTML
elements	used	to	display	the	data	from	the	state

5.	 We	also	defined	three	event	listeners:	one	to	detect	when	a	user
submits	a	form	that	contains	an	input	HTML	element	to	add	a
new	To-do	item,	another	to	detect	when	the	user	clicks	on	a	To-
do	item	displayed	on	the	screen	to	toggle	its	state	from	not
completed	to	completed	or	vice	versa,	and	finally	one	event
listener	to	detect	when	the	user	drags	an	element	from	the	list	to
dispatch	an	action	to	remove	it	from	the	list	of	To-do	items

379

Writing	Redux	store
enhancers
A	Redux	store	enhancer	is	a	higher-order	function	that	takes	a	store
creator	function	and	returns	a	new	enhanced	store	creator	function.	The
createStore	method	is	a	store	creator	which	has	the	following	signature:

createStore	=	(reducer,	preloadedState,	enhancer)	=>	Store	

While	a	store	enhancer	function	has	the	following	signature:

enhancer	=	(...optionalArguments)	=>	(

createStore	=>	(reducer,	preloadedState,	enhancer)	=>	Store	

)	

It	may	look	a	bit	difficult	to	understand	now,	but	you	don't	really	have
to	worry	if	you	don't	get	it	at	first	because	you	will	probably	never	need
to	write	a	store	enhancer.	The	purpose	of	this	recipe	was	simply	to	help
you	to	understand	their	purpose	in	a	very	simple	way.

380

Getting	ready
In	this	recipe,	you	will	create	a	store	enhancer	to	expand	the
functionality	of	Redux	by	allowing	the	definition	of	reducer	functions
in	a	Map	JavaScript	native	object.	First,	create	a	new	package.json	file	with
the	following	content:

{	

				"dependencies":	{	

								"redux":	"4.0.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install

381

How	to	do	it...
Remember	that	createStore	accepts	a	single	reducer	function	as	the	first
argument.	We	write	a	store	enhancer	to	allow	the	createStore	method	to
accept	a	Map	object	containing	key-value	pairs,	where	key	is	the	property
or	slice	of	state	that	will	be	managed,	and	value	is	a	reducer	function.
Then,	define	two	reducer	functions	using	a	Map	object	to	handle	two
slices	of	the	state,	one	for	a	counter	and	the	other	for	setting	the	current
time:

1.	 Create	a	new	file	named	map-store.js.
2.	 Include	the	Redux	library:

						const	{	

										createStore,	

										combineReducers,	

										bindActionCreators,	

						}	=	require('redux')	

3.	 Define	a	store	enhancer	function	that	will	allow	the	createStore
method	to	accept	a	Map	object	as	an	argument.	It	will	go	through
each	key-value	pair	of	the	Map	and	add	it	to	an	object	which	will
then	be	used	to	combine	the	reducers	using	the	combineReducers
method:

						const	acceptMap	=	()	=>	createStore	=>	(

										(reducerMap,	...rest)	=>	{	

														const	reducerList	=	{}	

														for	(const	[key,	val]	of	reducerMap)	{	

																		reducerList[key]	=	val	

														}	

														return	createStore(

382

																		combineReducers(reducerList),	

																		...rest,	

)	

										}	

)	

4.	 Define	actions	types:

						const	TYPE	=	{	

										INC_COUNTER:	'INC_COUNTER',	

										DEC_COUNTER:	'DEC_COUNTER',	

										SET_TIME:	'SET_TIME',	

						}	

5.	 Define	actions	creators:

						const	actions	=	{	

										incrementCounter:	(incBy)	=>	({	

														type:	TYPE.INC_COUNTER,	

														incBy,	

										}),	

										decrementCounter:	(decBy)	=>	({	

														type:	TYPE.DEC_COUNTER,	

														decBy,	

										}),	

										setTime:	(time)	=>	({	

														type:	TYPE.SET_TIME,	

														time,	

										}),	

						}	

6.	 Define	a	map	constant	that	will	contain	an	instance	of	Map:

						const	map	=	new	Map()	

7.	 Add	a	new	reducer	function	to	the	map	object	with	a	key	counter:

383

						map.set('counter',	(state	=	0,	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.INC_COUNTER:	return	state	+	action.incBy	

														case	TYPE.DEC_COUNTER:	return	state	-	action.decBy	

														default:	return	state	

										}	

						})	

8.	 Add	another	reducer	function	to	the	map	object	with	a	key	time:

						map.set('time',	(state	=	null,	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.SET_TIME:	return	action.time	

														default:	return	state	

										}	

						})	

9.	 Create	a	new	store	providing	the	map	as	the	first	argument	and
the	store	enhancer	as	the	second	argument	to	extend	the
functionality	of	the	createStore	method:

						const	store	=	createStore(map,	acceptMap())	

10.	 Bind	the	previously	defined	actions	creators	to	the	dispatch
method	of	the	store:

						const	{	

										incrementCounter,	

										decrementCounter,	

										setTime,	

						}	=	bindActionCreators(actions,	store.dispatch)	

11.	 To	test	the	code	in	NodeJS,	use	the	setInterval	global	method	to
repeatedly	call	a	function	every	second.	It	will	first	dispatch	an

384

action	to	set	the	current	time,	then,	based	on	the	criteria,	it	will
decide	if	to	increment	or	decrement	the	counter.	After,	pretty
print	in	the	terminal	the	current	value	of	the	store:

						setInterval(function()	{	

										setTime(new	Date().toTimeString())	

										if	(this.shouldIncrement)	{	

														incrementCounter((Math.random()	*	5)	+	1	|	0)	

										}	else	{	

														decrementCounter((Math.random()	*	5)	+	1	|	0)	

										}	

										console.dir(

														store.getState(),	

														{	colors:	true,	compact:	false	},	

)	

										this.shouldIncrement	=	!this.shouldIncrement	

						}.bind({	shouldIncrement:	false	}),	1000)	

12.	 Save	the	file.
13.	 Open	a	new	Terminal	and	run:

						node	map-store.js

14.	 The	current	state	would	be	displayed	every	second	having	this
shape:

						{	

										"counter":	Number,	

										"time":	String,	

						}	

385

How	it	works...
The	enhancer	composes	the	store	creator	into	a	new	one.	For	instance,
the	following	line:

const	store	=	createStore(map,	acceptMap())	

Could	be	written	as:

const	store	=	acceptMap()(createStore)(map)	

Which	actually,	in	a	way,	wraps	the	original	createStore	method	into
another	createStore	method.

Composition	can	be	explained	as	a	set	of	functions	that	are	called
accepting	the	result	argument	of	the	previous	function.	For	instance:

const	c	=	(...args)	=>	f(g(h(...args)))	

This	composes	functions	f,	g,	and	h	from	right	to	left	into	a	single
function	c.	That	means,	we	could	write	the	previous	line	of	code	also
like	this:

const	_createStore	=	acceptMap()(createStore)	

const	store	=	_createStore(map)	

Here	_createStore	is	the	result	of	composing	createStore	and	your	store
enhancer	function.

386

Time	traveling	with
Redux
Even	though,	you	may	probably	never	need	to	write	store	enhancers,
there	is	one	special	that	you	may	find	very	useful	for	debugging	your
Redux	powered	applications	to	time	travel	through	the	state	of	your
application.	You	can	enable	time	traveling	on	your	application	by
simple	installing	Redux	DevTools	Extension	(for	Chrome	and
Firefox):	https://github.com/zalmoxisus/redux-devtools-extension.

https://github.com/zalmoxisus/redux-devtools-extension

387

Getting	ready
In	this	recipe,	we	will	see	an	example	of	how	to	take	advanced	of	this
feature	and	analyze	how	the	state	of	your	application	has	changed	over
the	time	that	was	running	on	the	browser.	First,	create	a	new	package.json
file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"redux":	"4.0.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install	

Make	sure	to	have	installed	the	Redux	DevTools	Extension	in	your	web
browser.

388

How	to	do	it...
Build	a	counter	application	that	will	randomly	increment	or	decrement
the	initial	specified	counter	10	times	when	the	application	is	run	on	the
browser.	However,	because	it	happens	fast,	the	user	won't	be	able	to
notice	that	the	state	has	actually	changed	10	times	since	the	application
started.	We	will	use	the	Redux	DevTools	Extension	to	navigate	and
analyze	how	the	state	has	changed	over	time.

First,	build	a	small	ExpressJS	server	application	that	will	serve	the
client	application	and	the	Redux	library	installed	in	node_modules:

1.	 Create	a	new	file	named	time-travel.js
2.	 Add	the	following	code:

						const	express	=	require('express')	

						const	path	=	require('path')	

						const	app	=	express()	

						app.use('/lib',	express.static(

										path.join(__dirname,	'node_modules',	'redux',	'dist')	

))	

						app.get('/',	(req,	res)	=>	{	

										res.sendFile(path.join(

														__dirname,	

														'time-travel.html',	

))	

						})	

						app.listen(

										1337,	

										()	=>	console.log('Web	Server	running	on	port	1337'),	

)	

3.	 Save	the	file

389

Next,	build	your	counter,	Redux	powered	application,	with	time	travel
capabilities:

1.	 Create	a	new	file	named	time-travel.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Time	travel</title>	

										<script	

											src="https://unpkg.com/@babel/standalone/babel.min.js">

										</script>	

										<script	src="/lib/redux.js"></script>	

						</head>	

						<body>	

										<h1>Counter:	</h1>	

										<script	type="text/babel">	

														//	Add	JavaScript	Code	here	

										</script>	

						</body>	

						</html>	

3.	 Inside	the	script	tag	add	the	JavaScript	code	that	follows	the
next	steps,	starting	from	step	4

4.	 Keep	a	reference	to	the	span	HTML	element	that	will	display	the
current	value	of	the	counter	whenever	the	state	changes:

						const	counterElem	=	document.querySelector('#counter')	

5.	 Get	the	createStore	method	and	bindActionCreators	method	from
the	Redux	library:

						const	{	

										createStore,	

										bindActionCreators,	

390

						}	=	Redux	

6.	 Define	two	action	types:

						const	TYPE	=	{	

										INC_COUNTER:	'INC_COUNTER',	

										DEC_COUNTER:	'DEC_COUNTER',	

						}	

7.	 Define	two	action	creators:

						const	actions	=	{	

										incCounter:	(by)	=>	({	type:	TYPE.INC_COUNTER,	by	}),	

										decCounter:	(by)	=>	({	type:	TYPE.DEC_COUNTER,	by	}),	

						}	

8.	 Define	a	reducer	function	that	will	transform	the	state
according	to	the	given	action	type:

						const	reducer	=	(state	=	{	value:	5	},	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.INC_COUNTER:	

																		return	{	value:	state.value	+	action.by	}	

														case	TYPE.DEC_COUNTER:	

																		return	{	value:	state.value	-	action.by	}	

														default:	

																		return	state	

										}	

						}	

9.	 Create	a	new	store	providing	a	store	enhancer	function	that	will
be	available	on	the	window	object	when	the	Redux	DevTools
extension	is	installed:

391

						const	store	=	createStore(

										reducer,	

										(

														window.__REDUX_DEVTOOLS_EXTENSION__	&&	

														window.__REDUX_DEVTOOLS_EXTENSION__()	

),	

)	

10.	 Bind	the	action	creators	to	the	dispatch	method	of	the	store:

						const	{	

										incCounter,	

										decCounter,	

						}	=	bindActionCreators(actions,	store.dispatch)	

11.	 Subscribe	a	listener	function	to	the	store	that	will	update	the
span	HTML	element	whenever	the	state	changes:

						store.subscribe(()	=>	{	

										const	state	=	store.getState()	

										counterElem.textContent	=	state.value	

						})	

12.	 Let's	create	a	for	loop	that	will	update	increment	or	decrement
the	counter	randomly	10	times	when	the	application	is	run:

						for	(let	i	=	0;	i	<	10;	i++)	{	

										const	incORdec	=	(Math.random()	*	10)	>	5	

										if	(incORdec)	incCounter(2)	

										else	decCounter(1)	

						}	

13.	 Save	the	file

392

Let's	test	it...
To	see	the	previous	work	in	action:

1.	 Open	a	new	Terminal	and	run:

						node	todo-time.js

2.	 In	your	Browser,	visit:

						http://localhost:1337/

3.	 Open	Developer	Tools	of	your	Browser	and	look	for	the	Redux
tab.	You	should	see	a	tab	like	this:

393

Redux	DevTools	–	Tab	Window

4.	 The	slider	allows	you	to	move	from	the	last	state	to	the	very
first	state	of	your	application.	Try	moving	the	slider	to	a
different	position:

Redux	DevTools	–	Moving	Slider

394

5.	 While	moving	the	slider,	you	would	be	able	to	see	in	your
browser	the	counters	initial	value	and	how	it	changed	those	ten
times	in	the	for	loop

395

There's	more
Redux	DevTools	has	some	features	that	you	will	probably	find
amazing	and	helpful	for	debugging	and	managing	the	state	of	your
application.	In	fact,	if	you	followed	the	previous	recipes,	I	suggest	you
go	back	to	the	projects	we	wrote	and	enable	this	enhancer	and	try	to
experiment	with	Redux	DevTools.

One	of	many	features	of	Redux	DevTools	is	the	Log	monitor,	which
displays	in	chronological	order	which	action	was	dispatched	and	the
resulting	value	of	transforming	the	state:

Redux	DevTools	–	Log	Monitor

396

Understanding	Redux
middleware
Probably	the	easiest	and	best	way	of	extending	the	Redux	functionality
is	by	using	middleware.

There	is	a	store	enhancer	function	that	comes	in	the	Redux	library
named	applyMiddleware	and	allows	you	define	one	or	multiple	middleware
functions.	The	way	middleware	works	in	Redux	is	simple,	it	allows	you
to	wrap	the	dispatch	method	of	the	store	to	extend	its	functionality.	The
same	way	as	store	enhancer	functions,	middleware	is	composable	and
has	the	following	signature:

middleware	=	API	=>	next	=>	action	=>	next(action)	

Here,	API	is	an	object	containing	the	dispatch	and	getState	methods	from
the	store,	destructuring	the	API,	the	signature	looks	like	this:

middleware	=	({	

				getState,	

				dispatch,	

})	=>	next	=>	action	=>	next(action)		

Let's	analyze	how	it	works:

1.	 The	applyMiddleware	function	receives	one	or	more	middleware
functions	as	arguments.	For	example:

						applyMiddleware(middleware1,	middleware2)	

397

2.	 Each	middleware	function	is	kept	internally	as	an	Array.	Then,
internally	using	the	Array.prototype.map	method,	the	array	maps
each	middleware	function	by	calling	itself	providing	the
middleware	API	object	which	contains	the	dispatch	and	getState
methods	of	the	store.	Similar	to	this:

						middlewares.map((middleware)	=>	middleware(API))	

3.	 Then,	by	composing	all	the	middleware	functions,	it	computes
a	new	value	for	the	dispatch	method	providing	the	next	argument.
In	the	very	first	middleware	that	is	executed,	the	next	argument
refers	to	the	original	dispatch	method	before	any	middleware
was	applied.	For	instance,	if	applying	three	middleware
functions,	the	new	computed	dispatch	method's	signature
would	be:

						dispatch	=	(action)	=>	(

										(action)	=>	(

														(action)	=>	store.dispatch(action)	

)(action)	

)(action)	

4.	 Which	means	that	a	middleware	function	can	interrupt	the
chain	and	prevent	a	certain	action	from	being	dispatched	if	the
next(action)	method	is	not	called

5.	 The	dispatch	method	from	the	middleware	API	object,	allows
you	to	call	the	dispatch	method	of	the	store	with	the	previously
applied	middleware.	That	means,	if	you	are	not	careful	while
using	this	method,	you	may	create	an	infinite	loop

Understanding	how	it	works	internally	may	not	be	so	simple	at	first,	but
I	assure	you	that	you	will	get	it	soon.

398

Getting	ready
In	this	recipe,	you	will	write	a	middleware	function	that	will	warn	the
user	when	dispatching	an	action	type	that	has	not	been	defined.	First,
create	a	new	package.json	file	with	the	following	content:

{	

				"dependencies":	{	

								"redux":	"4.0.0"	

				}	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

399

How	to	do	it...
Redux	doesn't	warn	you	or	display	errors	when	an	action	type,	that	was
never	defined	within	your	reducers,	is	used.	Build	a	NodeJS	application
that	will	use	Redux	to	manage	its	state.	Focus	on	writing	a	middleware
function	that	will	check	that	the	dispatched	actions	types	are	defined	or
else	throw	an	error:

1.	 Create	a	new	file	named	type-check-redux.js.
2.	 Include	the	Redux	library:

						const	{	

										createStore,	

										applyMiddleware,	

						}	=	require('redux')	

3.	 Define	an	object	containing	the	allowed	action	types:

						const	TYPE	=	{	

										INCREMENT:	'INCREMENT',	

										DECREMENT:	'DECREMENT',	

										SET_TIME:	'SET_TIME',	

						}	

4.	 Create	a	dummy	reducer	function	that	returns	its	original	state
whichever	action	type	is	called.	We	don't	need	it	for	the
purpose	of	this	recipe:

						const	reducer	=	(

										state	=	null,	

400

										action,	

)	=>	state	

5.	 Define	a	middleware	function	that	will	intercept	every	action
that	is	being	dispatched	and	check	whether	the	action	type
exists	in	the	TYPE	object.	If	the	action	exists	allow	the	action	to
be	dispatched,	or	otherwise,	throw	an	error	and	inform	the	user
that	an	invalid	action	type	was	dispatched.	Additionally,	let's
provide	the	user,	as	part	of	the	error	message,	information
about	which	valid	types	are	allowed:

						const	typeCheckMiddleware	=	api	=>	next	=>	action	=>	{	

										if	(Reflect.has(TYPE,	action.type))	{	

														next(action)	

										}	else	{	

														const	err	=	new	Error(

																		`Type	"${action.type}"	is	not	a	valid`	+	

																		`action	type.	`	+	

																		`did	you	mean	to	use	one	of	the	following`	+	

																		`valid	types?	`	+	

																		`"${Reflect.ownKeys(TYPE).join('"|"')}"n`,	

)	

														throw	err	

										}	

						}	

6.	 Create	a	store	and	apply	the	defined	middleware	function:

						const	store	=	createStore(

										reducer,	

										applyMiddleware(typeCheckMiddleware),	

)	

7.	 Dispatch	two	action	types.	The	first	action	type	is	valid,	and	it
exists	in	the	TYPE	object.	However,	the	second	one	is	an	action
type	that	was	never	defined:

401

						store.dispatch({	type:	'INCREMENT'	})	

						store.dispatch({	type:	'MISTAKE'	})	

8.	 Save	the	file.

402

Let's	test	it...
First,	open	a	new	Terminal	and	run:

				node	type-check-redux.js	

The	Terminal	output	should	display	an	error	similar	to	this:

/type-check-redux.js:25	

																throw	err	

																^	

Error:	Type	"MISTAKE"	is	not	a	valid	action	type.	did	you	mean	to	

use	one	of	the	following	valid	types?	

"INCREMENT"|"DECREMENT"|"SET_TIME"	

				at	Object.action	[as	dispatch]	(/type-check-redux.js:18:15)	

				at	Object.<anonymous>	(/type-check-redux.js:33:7)	

In	this	example,	the	stack	trace	tells	us	that	the	error	happened	on	line
18,	which	points	to	our	middleware	function.	However,	the	next	one
points	to	line	33,	store.dispatch({	type:	'MISTAKE'	}),	which	is	a	good	thing
because	it	can	help	you	track	exactly	where	certain	actions	are
dispatched	that	were	never	defined.

403

How	it	works...
It's	pretty	simple,	the	middleware	function	checks	the	action	type,	of
the	action	being	dispatched,	to	see	if	it	exists	as	a	property	of	the	TYPE
object	constant.	If	it	exists,	then	the	middleware	passes	control	to	the
next	middleware	in	the	chain.	However,	in	our	case,	there	is	no	next
middleware,	so	the	control	is	passed	to	the	original	dispatch	method	of
the	store	that	will	apply	the	reducer	and	transform	the	state.	On	the
other	side,	if	the	action	type	was	not	defined,	the	middleware	function
interrupts	the	middleware	chain	by	not	calling	the	next	function	and	by
throwing	an	error.

404

Dealing	with
asynchronous	data	flow
By	default,	Redux	doesn't	handle	asynchronous	data	flow.	There	are
several	libraries	out	there	that	can	help	you	with	these	tasks.	However,
for	the	purpose	of	this	chapter,	we	will	build	our	own	implementation
using	middleware	functions	to	give	the	dispatch	method	the	ability	to
dispatch	and	handle	asynchronous	data	flow.

405

Getting	ready
In	this	recipe,	you	will	build	an	ExpressJS	application	with	a	very	small
API	to	test	your	application	when	making	HTTP	requests	and	dealing
with	asynchronous	data	flow	and	errors.	First,	create	a	new	package.json
file	with	the	following	content:

{	

				"dependencies":	{	

								"express":	"4.16.3",	

								"node-fetch":	"2.1.2",	

								"redux":	"4.0.0"	

				}	

}	

Then	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install		

406

How	to	do	it...
Build	a	simple	RESTful	API	server	that	will	have	two	endpoints	or
answer	to	paths	/time	and	/date	when	a	GET	request	is	made.	However,
on	/date	path,	we	will	pretend	that	there	is	an	internal	error	and	make
the	request	fail	in	order	to	see	how	to	handle	errors	in	asynchronous
requests	as	well:

1.	 Create	a	new	file	named	api-server.js
2.	 Include	the	ExpressJS	library	and	initialize	a	new	ExpressJS

application:

						const	express	=	require('express')	

						const	app	=	express()	

3.	 For	/time	path,	simulates	a	delay	of	2s	before	sending	a
response:

						app.get('/time',	(req,	res)	=>	{	

										setTimeout(()	=>	{	

														res.send(new	Date().toTimeString())	

										},	2000)	

						})	

4.	 For	/date	path,	simulates	a	delay	of	2s	before	sending	a	failed
response:

						app.get('/date',	(req,	res)	=>	{	

										setTimeout(()	=>	{	

407

														res.destroy(new	Error('Internal	Server	Error'))	

										},	2000)	

						})	

5.	 Listen	on	port	1337	for	new	connections

						app.listen(

										1337,	

										()	=>	console.log('API	server	running	on	port	1337'),	

)	

6.	 Save	the	file

As	for	the	client,	build	a	NodeJS	application	using	Redux	that	will
dispatch	synchronous	and	asynchronous	actions.	Write	a	middleware
function	to	allow	the	dispatch	method	to	handle	asynchronous	actions:

1.	 Create	a	new	file	named	async-redux.js
2.	 Include	the	node-fetch	and	Redux	libraries:

						const	fetch	=	require('node-fetch')	

						const	{	

										createStore,	

										applyMiddleware,	

										combineReducers,	

										bindActionCreators,	

						}	=	require('redux')	

3.	 Define	three	kinds	of	status.	Each	status	represents	the	state	of
an	asynchronous	operation:

						const	STATUS	=	{	

										PENDING:	'PENDING',	

										RESOLVED:	'RESOLVED',	

										REJECTED:	'REJECTED',	

408

						}	

4.	 Define	two	action	types:

						const	TYPE	=	{	

										FETCH_TIME:	'FETCH_TIME',	

										FETCH_DATE:	'FETCH_DATE',	

						}	

5.	 Define	action	creators.	Notice	that	the	value	property	is	an
asynchronous	function	in	the	first	two	action	creators.	Your,
later	defined,	middleware	function	will	be	responsible	for
making	Redux	understand	these	actions:

						const	actions	=	{	

										fetchTime:	()	=>	({	

														type:	TYPE.FETCH_TIME,	

														value:	async	()	=>	{	

																		const	time	=	await	fetch(

																						'http://localhost:1337/time'	

).then((res)	=>	res.text())	

																		return	time	

														}	

										}),	

										fetchDate:	()	=>	({	

														type:	TYPE.FETCH_DATE,	

														value:	async	()	=>	{	

																		const	date	=	await	fetch(

																						'http://localhost:1337/date'	

).then((res)	=>	res.text())	

																		return	date	

														}	

										}),	

										setTime:	(time)	=>	({	

														type:	TYPE.FETCH_TIME,	

														value:	time,	

										})	

						}	

6.	 Define	a	common	function	for	setting	values	from	an	action

409

object	that	will	be	used	in	your	reducer:

						const	setValue	=	(prevState,	action)	=>	({	

										...prevState,	

										value:	action.value	||	null,	

										error:	action.error	||	null,	

										status:	action.status	||	STATUS.RESOLVED,	

						})	

7.	 Define	the	initial	state	of	your	application:

						const	iniState	=	{	

										time:	{	

														value:	null,	

														error:	null,	

														status:	STATUS.RESOLVED,	

										},	

										date:	{	

														value:	null,	

														error:	null,	

														status:	STATUS.RESOLVED,	

										}	

						}	

8.	 Define	a	reducer	function.	Notice	that	it	is	only	one	reducer	that
handles	two	slices	of	the	state,	the	time	and	the	date:

						const	timeReducer	=	(state	=	iniState,	action)	=>	{	

										switch	(action.type)	{	

														case	TYPE.FETCH_TIME:	return	{	

																		...state,	

																		time:	setValue(state.time,	action)	

														}	

														case	TYPE.FETCH_DATE:	return	{	

																		...state,	

																		date:	setValue(state.date,	action)	

														}	

														default:	return	state	

										}	

						}	

410

9.	 Define	a	middleware	function	that	will	check	whether	a
dispatched	action	type	has	a	function	as	the	value	property.	If
that	is	so,	assume	that	the	value	property	is	an	async	function.
First,	we	dispatch	an	action	to	set	the	status	as	PENDING.	Then,
when	the	async	function	is	resolved,	we	dispatch	another	action
to	set	the	status	as	RESOLVED	or	in	case	of	an	error	as	REJECTED:

						const	allowAsync	=	({	dispatch	})	=>	next	=>	action	=>	{	

										if	(typeof	action.value	===	'function')	{	

														dispatch({	

																		type:	action.type,	

																		status:	STATUS.PENDING,	

														})	

														const	promise	=	Promise	

																		.resolve(action.value())	

																		.then((value)	=>	dispatch({	

																						type:	action.type,	

																						status:	STATUS.RESOLVED,	

																						value,	

																		}))	

																								.catch((error)	=>	dispatch({	

																						type:	action.type,	

																						status:	STATUS.REJECTED,	

																						error:	error.message,	

																		}))	

														return	promise	

										}	

										return	next(action)	

						}	

10.	 Create	a	new	store	and	apply	your	defined	middleware	function
to	extend	the	functionality	of	the	dispatch	method:

						const	store	=	createStore(

										timeReducer,	

										applyMiddleware(

														allowAsync,	

),	

)	

411

11.	 Bind	action	creators	to	the	dispatch	method	of	the	store:

						const	{	

										setTime,	

										fetchTime,	

										fetchDate,	

						}	=	bindActionCreators(actions,	store.dispatch)	

12.	 Subscribe	a	function	listener	to	the	store	and	display	in	terminal
the	state	tree,	as	a	JSON	string,	every	time	there	is	a	change	in
the	state:

						store.subscribe(()	=>	{	

										console.log('x1b[1;34m%sx1b[0m',	'State	has	changed')	

										console.dir(

														store.getState(),	

														{	colors:	true,	compact:	false	},	

)	

						})	

13.	 Dispatch	a	synchronous	action	to	set	the	time:

						setTime(new	Date().toTimeString())	

14.	 Dispatch	an	asynchronous	action	to	fetch	and	set	the	time:

						fetchTime()	

15.	 Dispatch	another	asynchronous	action	to	fetch	and	try	to	set	the
date.	Remember	that	this	operation	is	supposed	to	fail	and	it's
intentional:

412

						fetchDate()	

16.	 Save	the	file.

413

Let's	test	it...
To	see	your	previous	work	in	action:

1.	 Open	a	new	terminal	and	run:

						node	api-server.js

2.	 Without	closing	the	previously	running	NodeJS	process,	open
another	Terminal	and	run:

						node	async-redux.js

414

How	it	works...
1.	 Every	time	there	is	a	change	in	the	state,	the	subscribed	listener

function	will	pretty	print	in	the	terminal	the	current	state	tree
2.	 The	first	dispatched	action	is	synchronous.	It	will	cause	the

time	slice	of	the	state	tree	to	be	updated	like	this,	for	example:

						time:	{	

										value:	"01:02:03	GMT+0000",	

										error:	null,	

										status:	"RESOLVED"	

						}	

3.	 The	second	action	being	dispatched	is	asynchronous.	Internally,
two	actions	are	dispatched	to	reflect	the	state	of	the
asynchronous	operation,	one	when	the	async	function	is	still	in
execution,	and	another	when	the	async	function	was	fulfilled:

						time:	{	

										value:	null,	

										error:	null,	

										status:	"PENDING"	

						}	

						//	Later,	once	the	operation	is	fulfilled:	

						time:	{	

										value:	"01:02:03	GMT+0000",	

										error:	null,	

										status:	"RESOLVED"	

						}	

4.	 The	third	action	being	dispatched	is	also	asynchronous.

415

Internally,	it	also	causes	two	actions	to	be	dispatched	to	reflect
the	state	of	the	async	operation:

						date:	{	

										value:	null,	

										error:	null,	

										status:	"PENDING"	

						}	

						//	Later,	once	the	operation	is	fulfilled:	

						date:	{	

										value:	null,	

										error:	"request	to	http://localhost:1337/date	failed,	

reason:			

													socket	hang	up",	

										status:	"REJECTED"	

						}	

5.	 Take	into	account	that	because	the	operations	are
asynchronous,	the	output	displayed	in	the	terminal	may	not
always	be	in	the	same	order

6.	 Notice	that	the	first	async	operation	is	fulfilled	and	the	status
marked	as	RESOLVED	while	the	second	async	operation	is	fulfilled
and	its	status	marked	as	REJECTED

7.	 The	statuses	PENDING,	RESOLVED,	and	REJECTED	reflect	the	three
statuses	that	a	JavaScript	Promise	can	be,	and	they	are	not
obligatory	names,	simply	easy	to	remember

416

There's	more...
If	you	don't	want	to	write	your	own	middleware	functions	or	store
enhancers	to	deal	with	asynchronous	operations,	you	can	opt	to	use	one
of	the	many	libraries	for	Redux	that	exist	out	there.	Two	of	the	most	use
or	popular	ones	are	these:

Redux	Thunk—https://github.com/gaearon/redux-thunk

Redux	Saga—https://github.com/redux-saga/redux-saga

https://github.com/gaearon/redux-thunk
https://github.com/redux-saga/redux-saga

417

Building	Web
Applications	with	React
In	this	chapter,	we	will	cover	the	following	recipes:

Understanding	React	elements	and	React	components

Composing	components

Stateful	components	and	life	cycle	methods

Working	with	React.PureComponent

React	event	handlers

Conditional	rendering	of	components

Rendering	lists	with	React

Working	with	forms	and	inputs	in	React

Understanding	refs	and	how	to	use	them

Understanding	React	portals

Catching	errors	with	error	boundary	components

Type	checking	properties	with	PropTypes

418

Technical	requirements
You	will	be	required	to	know	Go	programming	language,	also	basics	of
web	application	framework.	You	will	also	need	to	install	Git,	in	order
use	the	Git	repository	of	this	book.	And	finally,	ability	to	develop	with
an	IDE	on	the	command	line.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter06

Check	out	the	following	video	to	see	the	code	in	action:
https://goo.gl/J7d7Ag

https://github.com/PacktPublishing/MERN-Quick-Start-Guide/tree/master/Chapter06
https://goo.gl/J7d7Ag

419

Introduction
React	is	a	JavaScript	library	for	building	user	interfaces	(UI).	React	is
component-based,	which	means	that	each	component	can	live
separately	from	others	and	manage	its	own	state.	Complex	UIs	can	be
created	by	composing	components.

Components	are	usually	created	using	JSX	syntax,	which	has	an	XML-
like	syntax,	or	using	the	React.createElement	method.	However,	JSX	is
what	makes	React	special	for	building	web	applications	in	a	declarative
way.

In	the	MVC	pattern,	React	is	usually	associated	with	the	View.

420

Understanding	React
elements	and	React
components
React	elements	can	be	created	using	JSX	syntax:

const	element	=	<h1>Example</h1>	

This	is	transformed	to:

const	element	=	React.createElement('h1',	null,	'Example')	

JSX	is	a	language	extension	on	top	of	JavaScript	that	allows	you	to
create	complex	UIs	with	ease.	For	example,	consider	the	following:

const	element	=	(

				<details>	

								<summary>React	Elements</summary>	

								<p>JSX	is	cool</p>	

				</details>	

)	

The	previous	example	could	be	written	without	JSX	syntax	as:

const	element	=	React.createElement(

				'details',	

				null,	

				React.createElement('summary',	null,	'React	Elements'),	

				React.createElement('p',	null,	'JSX	is	cool'),	

)	

421

React	elements	can	be	any	HTML5	tag	and	any	JSX	tag	can	be	self-
closed.	For	instance,	the	following	will	create	a	paragraph	React
element	with	an	empty	content	within:

const	element	=	<p	/>	

The	same	way	as	you	would	do	with	HTML5,	you	can	provide
attributes	to	React	elements,	called	properties	or	props	in	React:

const	element	=	(

				<input	type="text"	value="Example"	readOnly	/>	

)	

React	components	allow	you	to	isolate	parts	of	your	web	application
as	re-usable	pieces	of	code	or	components.	They	can	be	defined	in
several	ways.	For	instance:

Functional	components:	These	are	plain	JavaScript	functions
that	accept	properties	as	the	first	argument	and	return	React
elements:

						const	InputText	=	({	name,	children	})	=>	(

										<input	

														type="text"	

														name={name}	

														value={children}	

														readOnly	

										/>	

)	

Class	components:	Using	ES6	classes	allows	you	to	define	life
cycle	methods	and	create	stateful	components.	They	render
React	elements	from	the	render	method:

						class	InputText	extends	React.Component	{	

										render()	{	

422

														const	{	name,	children	}	=	this.props	

														return	(

																		<input	

																						type="text"	

																						name={name}	

																						value={children}	

																						readOnly	

																		/>	

)	

										}	

						}	

Expressions:	These	keep	a	reference	to	an	instance	of	a	React
element	or	component:

						const	InstanceInputText	=	(

										<InputText	name="username">	

														Huang	Jx	

										</InputText>	

)	

There	are	a	few	properties	that	are	unique	and	are	only	part	of	React.
For	instance,	the	children	property	refers	to	the	elements	contained
within	the	tag:

<MyComponent>	

				Example	

</MyComponent>	

The	children	property	received	in	MyComponent,	in	the	previous	example,
will	be	an	instance	of	a	span	React	element.	If	multiple	React	elements
or	components	are	passed	as	children,	the	children	property	will	be	an
array.	However,	if	no	children	are	passed,	the	children	property	will	be
null.	The	children	property	doesn't	necessarily	need	to	be	a	React
element	or	component;	it	can	also	be	a	JavaScript	function,	or	a
JavaScript	primitive:

<MyComponent>	

				{()	=>	{	

								console.log('Example!')	

								return	null

423

				}}	

</MyComponent>	

React	also	considers	functional	components	and	class	components	that
return	or	render	a	string,	a	valid	React	component.	For	instance:

const	SayHi	=	({	to	})	=>	(

				`Hello	${to}`	

)	

const	element	=	(

				<h1>	

								<SayHi	to="John"	/>,	how	are	you?	

				</h1>	

)	

React	components'	names	must	start	with	an	uppercase	letter.	Otherwise,	React	will	treat
lowercased	JSX	tags	as	React	elements

Rendering	components	to	the	DOM	in	React	is	not	a	complicated
task.	React	provides	several	methods	for	rendering	a	React	component
to	the	DOM	using	the	ReactDOM	library.	React	uses	JSX	or
React.createElement	to	create	a	tree	or	a	representation	of	the	DOM	tree.	It
does	so	by	using	a	virtual	DOM,	which	allows	React	to	transform	React
elements	to	DOM	nodes	and	update	only	the	nodes	that	have	changed.

This	is	how	you	usually	render	your	application	using	the	render	method
from	the	ReactDOM	library:

import	*	as	ReactDOM	from	'react-dom'	

import	App	from	'./App'	

ReactDOM.render(

			<App	/>,	

			document.querySelector('[role="main"]'),	

)	

The	first	argument	provided	to	the	render	method	is	a	React	component
or	a	React	element.	The	second	argument	tells	you	where	in	the	DOM
to	render	the	application.	In	the	previous	example,	we	use	the
querySelector	method	from	the	document	object	to	look	for	a	DOM	node
with	an	attribute	of	role	set	to	"main".

React	also	allows	you	to	render	React	components	as	an	HTML	string,
which	is	useful	for	generating	content	on	the	server	side	and	sending

424

the	content	directly	to	the	browser	as	an	HTML	file:

import	*	as	React	from	'react'	

import	*	as	ReactDOMServer	from	'react-dom/server'	

const	OrderedList	=	({	children	})	=>	(

				

						{children.map((item,	indx)	=>	(

									<li	key={indx}>{item}	

))}	

				

)	

console.log(

			ReactDOMServer.renderToStaticMarkup(

						<OrderedList>	

									{['One',	'Two',	'Three']}	

						</OrderedList>	

)	

)	

It	will	output	the	following	in	the	console:

	

			One	

			Two	

			Three	

	

425

Getting	ready
In	this	recipe,	you	will	create	a	simple	React	application	using	the
concepts	that	you	have	learned	about	React	components	and	React
elements.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install	

426

How	to	do	it...
Create	a	React	application	that	will	display	a	welcome	message	writing
functional,	class,	and	expression	components:

1.	 Create	a	new	file	named	basics.js.
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	a	new	functional	component	that	will	render	a	span	React
element	with	color	set	to	red	in	its	style	attributes:

						const	RedText	=	({	text	})	=>	(

											

														{text}	

											

)	

4.	 Define	another	functional	component	that	will	render	an	h1
React	element	and	the	RedText	functional	component	as	part	of
its	children:

						const	Welcome	=	({	to	})	=>	(

										<h1>Hello,	<RedText	text={to}/></h1>	

)	

427

5.	 Define	an	expression	that	will	contain	a	reference	to	a	React
element:

						const	TodoList	=	(

											

														Lunch	at	14:00	with	Jenny	

														Shower	

											

)	

6.	 Define	a	class	component	named	Footer	that	will	display	the
current	date:

						class	Footer	extends	React.Component	{	

										render()	{	

														return	(

																		<footer>	

																						{new	Date().toDateString()}	

																		</footer>	

)	

										}	

						}	

7.	 Render	the	application	to	the	DOM:

						ReactDOM.render(

										<div>	

														<Welcome	to="John"	/>	

														{TodoList}	

														<Footer	/>	

										</div>,	

										document.querySelector('[role="main"]'),	

)	

8.	 Save	the	file.

428

Then,	create	an	index.html	file	where	you	will	render	the	React
application:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>MyApp</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./basics.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

429

Let's	test	it...
To	see	the	previous	work	in	action:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 You	should	be	able	to	see	the	React	application	rendered	to	the
DOM

430

Composing
components
In	React,	all	components	can	be	isolated	and	complex	UIs	can	be	built
by	composing	components	which	enables	their	re-usability.

431

Getting	ready
In	this	recipe,	you	will	work	with	re-usable	components	to	generate	a
home	page	containing	three	sections:	a	header,	a	paragraph	with	a
description,	and	a	footer.	These	three	sections	will	be	written	as	three
separate	components	that	will	be	composed	later	to	build	a	home	page.
Before	you	start,	create	a	new	package.json	file	with	the	following
content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

432

How	to	do	it...
Create	a	new	folder	named	component	in	the	root	directory	of	your
project.	Then,	create	the	following	three	files	in	order:

1.	 Header.js
2.	 Footer.js
3.	 Description.js

The	Header	component	will	generate	an	h1	React	element	that	represents
the	heading	of	the	page.	It	expects	to	receive	a	title	property:

1.	 Create	a	new	file	named	Header.js	in	the	component	directory
2.	 Add	the	following	code:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

						export	default	({	title	})	=>	(

										<h1>{title}</h1>	

)	

3.	 Save	the	file

The	Footer	component	will	generate	a	footer	React	element	that	will	be
placed	at	the	end	of	the	page.	It	will	expect	to	receive	a	date	property:

1.	 Create	a	new	file	named	Footer.js	in	the	component	directory
2.	 Add	the	following	code:

433

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

						export	default	({	date	})	=>	(

										<footer>{date}</footer>	

)	

3.	 Save	the	file

The	Description	component	will	generate	a	paragraph	that	will	display	a
description	of	the	page:

1.	 Create	a	new	file	named	Description.js	in	the	component	directory
2.	 Add	the	following	code:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

						export	default	()	=>	(

										<p>This	is	a	cool	website	designed	with	ReactJS</p>	

)	

3.	 Save	the	file

Next,	move	back	out	of	the	component	directory	to	the	root	directory	of
your	project	where	package.json	is	located	and	create	the	following	file:

1.	 Create	a	new	file	named	composing-react.js
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Import	the	previously	defined	components:

434

						import	Header	from	'./component/Header'	

						import	Footer	from	'./component/Footer'	

						import	Description	from	'./component/Description'	

4.	 Define	a	App	component	that	will	render	your	previously	defined
components:

						const	App	=	()	=>	(

										<React.Fragment>	

														<Header	title="Simple	React	App"	/>	

														<Description	/>	

														<Footer	date={new	Date().toDateString()}	/>	

										</React.Fragment>	

)	

5.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

6.	 Save	the	file

Then,	create	an	index.html	file	where	you	will	render	the	React
application:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Composing	Components</title>	

435

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./composing-react.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

436

Let's	test	it...
To	see	the	previous	work	in	action,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/	

3.	 If	you	inspect	the	DOM	tree	in	your	browser's	developer	tools,
you	should	be	able	to	see	the	following	DOM	structure:

						<div	role="app">	

						<h1>React	App</h1>	

						<p>This	is	a	cool	website	designed	with	ReactJS</p>	

						<footer>Tue	May	22	2018</footer>	

						</div>	

437

How	it	works...
Each	React	component	is	written	in	a	separate	file.	Then,	we	import	the
components	in	the	main	application	file,	composing-react.js,	and	use
composition	to	generate	a	virtual	DOM	tree.	Each	component	is	re-
usable	because	it	can	be	used	again	in	other	parts	of	your	application	or
in	other	components	by	just	importing	the	files.	Then,	the	render	method
from	the	ReactDOM	library	is	used	to	generate	a	DOM	representation	of
the	virtual	DOM	tree.

438

There's	more...
Did	you	notice	that	we	used	React.Fragment?	This	is	a	new	feature
introduced	in	React	v16.	It	allows	you	to	return	multiple	elements
without	creating	an	extra	DOM	node.	A	component	cannot	return
multiple	React	components	or	elements	in	the	following	way:

const	Example	=	()	=>	(

			One	

			Two	

)	//	<	will	trow	an	error	

However,	using	React.Fragment,	it's	possible	to	do	the	following:

const	Example	=	()	=>	(

			<React.Fragment>	

						One	

						Two	

			</React.Fragment>	

)	

439

Stateful	components
and	life	cycle	methods
React	components	can	manage	their	own	state	and	update	only	when
the	state	has	changed.	Stateful	React	components	are	written	using	ES6
classes:

class	Example	extends	React.Component	{	

			render()	{	

						This	is	an	example	

			}	

}	

React	class	components	have	a	state	instance	property	to	access	their
internal	state	and	a	props	property	to	access	properties	passed	to	the
component:

class	Example	extends	React.Component	{		

				state	=	{	title:	null	}	

				render()	{	

								return	(

												<React.Fragment>		

																{this.props.title}		

																{this.state.title}		

												</React.Fragment>		

)	

				}	

}	

And	their	state	can	be	mutated	by	using	the	setState	instance	method:

class	Example	extends	React.Component	{	

				state	=	{	

								title:	"Example",	

								date:	null,	

440

				}	

				componentDidMount()	{	

								this.setState((prevState)	=>	({	

												date:	new	Date().toDateString(),	

								}))	

				}	

				render()	{	

								return	(

												<React.Fragment>		

																{this.state.title}		

																{this.state.date}		

												</React.Fragment>		

)	

				}	

}	

The	state	is	initialized	once.	Then,	when	the	component	is	mounted,	the
state	should	only	be	mutated	using	the	setState	method.	This	way,	React
is	able	to	detect	changes	in	the	state	and	update	the	component.

The	setState	method	accepts	a	callback	function	as	the	first	argument
which	will	be	executed	passing	the	current	state	(prevState	for
convention)	as	the	first	argument	to	the	callback	function	and	the
current	props	as	the	second	argument.	This	is	so	because	setState	works
asynchronously	and	the	state	could	be	mutated	while	you	are
performing	other	actions	in	different	parts	of	your	component.

If	you	don't	need	access	to	the	current	state	while	updating	the	state,
you	can	directly	pass	an	object	as	the	first	argument.	For	instance,	the
previous	example	could	have	been	written	as:

componentDidMount()	{	

			this.setState({	

						date:	new	Date().toDateString(),	

			})	

}	

setState	also	accepts	an	optional	callback	function	as	a	second	argument
that	gets	called	once	the	state	has	been	updated.	Because	setState	is
asynchronous,	you	may	want	to	use	the	second	callback	to	perform	an
action	only	once	the	state	has	been	updated:

componentDidMount()	{	

441

			this.setState({	

						date:	new	Date().toDateString(),	

			},	()	=>	{	

						console.log('date	has	been	updated!')	

			})	

			console.log(this.state.date)	//	null	

}	

Once	the	component	is	mounted,	the	console	will	first	output	null	even
though	we	used	setState	before	it;	that's	because	the	state	is	set
asynchronously.	However,	once	the	state	is	updated,	the	console	will
display	"date	has	been	updated".

When	using	the	setState	method,	React	merges	the	previous	state	with	the	current	given
state.	Internally,	it's	similar	to	doing:

currentState	=	Object.assign({},	currentState,	nextState)	

Every	class	component	has	life	cycle	methods	that	give	you	control	over
the	life	of	your	component	since	its	creation	until	it's	destroyed,	as	well
as	giving	you	control	over	other	properties,	such	as	knowing	when	the
component	has	received	new	properties	and	if	the	component	should	be
updated	or	not.	These	are	the	life	cycle	methods	present	in	all	class
components:

constructor(props):	This	is	invoked	when	initializing	a	new
instance	of	the	component,	before	the	component	is	mounted.
props	must	be	passed	to	the	super	class	using	super(props)	to	let
React	set	the	props	correctly.	The	constructor	method	is	useful	as
well	to	initialize	the	initial	state	of	the	component.

static	getDerivedStateFromProps(nextProps,	nextState):	This	is
invoked	when	the	component	has	been	instantiated	and	when
the	component	will	receive	new	props.	This	method	is	useful
when	the	state	or	part	of	it	depends	on	values	received	from	the
props	passed	to	the	component.	It	must	return	an	object	which
will	be	merged	with	the	current	state	or	null	if	the	state	doesn't
need	to	be	updated	after	receiving	new	props.

componentDidMount():	This	is	invoked	after	the	component	has	been

442

mounted	and	after	the	first	render	call.	It's	useful	for	integrating
with	third-party	libraries,	accessing	the	DOM,	or	making	HTTP
requests	to	an	endpoint.

shouldComponentUpdate(nextProps,	nextState):	This	is	invoked	when
the	component	has	updated	the	state	or	new	props	have	been
received.	This	method	allows	React	to	know	if	it	should	update
the	component	or	not.	If	you	don't	implement	this	method	in
your	component,	it	defaults	to	returning	true,	which	means	the
component	should	be	updated	every	time	the	state	has	changed
or	new	props	have	been	received.	If	implementing	this	method
and	returning	false,	it	will	tell	React	not	to	update	the
component.

componentDidUpdate(prevProps,	prevState,	snapshot):	This	is	invoked
after	the	render	method	or	when	an	update	occurs,	except	for
the	first	rendering.

getSnapshotBeforeUpdate(prevProps,	prevState):	This	is	invoked	after
the	render	method	or	when	an	update	occurs	but	before	the
componentDidUpdate	life	cycle	method.	The	returned	value	of	this
method	is	passed	as	the	third	argument	of	componentDidUpdate.

componentWillUnmount():	This	is	invoked	before	a	component	is
unmounted	and	its	instance	destroyed.	If	using	third-party
libraries,	this	method	is	helpful	for	cleaning	up.	For	instance,
clearing	timers	or	cancelling	network	requests.

componentDidCatch(error,	info)	:	This	is	a	new	feature	of	React	v16
for	error	handling.	We	will	look	at	this	in	more	detail	in	the
following	recipes.

443

Getting	ready
In	this	recipe,	you	will	build	a	component	using	all	the	life	cycle
methods	that	we	have	learned	about.	First,	create	a	new	package.json	file
with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install		

444

How	to	do	it...
Build	a	LifeCycleTime	component	whose	only	purpose	would	be	to
display	the	current	time.	The	component	will	be	updated	every	100	ms
to	keep	the	component	in	sync	with	the	time	change.	We	will	use	the
life	cycle	methods	in	this	component	for	the	following	purposes:

constructor(props):	To	initialize	the	component's	initial	state.

static	getDerivedStateFromProps(nextProps,	nextState):	To	merge	the
props	with	the	state.

componentDidMount():	To	set	a	function	that	will	be	executed	every
100	ms	using	setInterval,	which	will	update	the	state	with	the
current	time.

shouldComponentUpdate(nextProps,	nextState):To	decide	if	the
component	should	be	rendered	or	not.	Check	if	props	have	a
property	dontUpdate	set	to	true,	which	means	the	component
shouldn't	be	updated	on	a	state	or	props	change.

componentDidUpdate(prevProps,	prevState,	snapshot):	To	simply	log	in
the	console	that	the	component	has	been	updated	displaying	the
snapshot's	value.

getSnapshotBeforeUpdate(prevProps,	prevState):	To	illustrate	the
functionality	of	this	method,	simply	return	a	string	that	will	be
passed	as	the	third	argument	to	componentDidUpdate.

componentWillUnmount():	When	the	component	is	destroyed	or
unmounted,	clear	the	interval	defined	in	componentDidMount.
Otherwise,	after	the	component	is	unmounted,	you	will	see	an

445

error	being	displayed.

First,	create	an	index.html	file	where	you	will	render	the	React
application:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Life	cycle	methods</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./stateful-react.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Next,	perform	the	following	steps	to	build	the	LifeCycleTime	component:

1.	 Create	a	new	file	named	stateful-react.js
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	a	LifeCycleTime	class	component	and	use	the	life	cycle
methods	as	previously	described:

						class	LifeCycleTime	extends	React.Component	{	

446

										constructor(props)	{	

														super(props)	

														this.state	=	{	

																		time:	new	Date().toTimeString(),	

																		color:	null,	

																		dontUpdate:	false,	

														}	

										}	

										static	getDerivedStateFromProps(nextProps,	prevState)	{	

														return	nextProps	

										}	

										componentDidMount()	{	

														this.intervalId	=	setInterval(()	=>	{	

																		this.setState({	

																						time:	new	Date().toTimeString(),	

																		})	

														},	100)	

										}	

										componentWillUnmount()	{	

														clearInterval(this.intervalId)	

										}	

										shouldComponentUpdate(nextProps,	nextState)	{	

														if	(nextState.dontUpdate)	{	

																		return	false	

														}	

														return	true	

										}	

										getSnapshotBeforeUpdate(prevProps,	prevState)	{	

														return	'snapshot	before	update'	

										}	

										componentDidUpdate(prevProps,	prevState,	snapshot)	{	

														console.log(

																		'Component	did	update	and	received	snapshot:',	

																		snapshot,	

)	

										}	

										render()	{	

														return	(

																			

																						{this.state.time}	

																			

)	

										}	

						}	

4.	 Then,	define	an	App	class	component,	which	will	be	used	for
testing	your	previously	created	component.	Add	three	buttons:
one	that	will	toggle	the	color	property	between	red	and	blue

447

and	pass	it	as	a	prop	to	the	LifeCycleTime	component,	another
button	for	toggling	the	dontUpdate	property	in	the	state	between
true	and	false,	which	will	then	be	passed	as	a	prop	to	the
LifeCycleTime,	and	finally,	a	button	that	when	clicked	will	either
mount	or	unmount	the	LifeCycleTime	component:

						class	App	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

														this.state	=	{	

																		color:	'red',	

																		dontUpdate:	false,	

																		unmount:	false,	

														}	

														this.toggleColor	=	this.toggleColor.bind(this)	

														this.toggleUpdate	=	this.toggleUpdate.bind(this)	

														this.toggleUnmount	=	this.toggleUnmount.bind(this)	

										}	

										toggleColor()	{	

														this.setState((prevState)	=>	({	

																		color:	prevState.color	===	'red'	

																						?	'blue'	

																						:	'red',	

														}))	

										}	

										toggleUpdate()	{	

														this.setState((prevState)	=>	({	

																		dontUpdate:	!prevState.dontUpdate,	

														}))	

										}	

										toggleUnmount()	{	

														this.setState((prevState)	=>	({	

																		unmount:	!prevState.unmount,	

														}))	

										}	

										render()	{	

														const	{	

																		color,	

																		dontUpdate,	

																		unmount,	

														}	=	this.state	

														return	(

																		<React.Fragment>	

																						{unmount	===	false	&&	<LifeCycleTime	

																										color={color}	

																										dontUpdate={dontUpdate}	

448

																						/>}	

																						<button	onClick={this.toggleColor}>	

																										Toggle	color	

																										{JSON.stringify({	color	})}	

																						</button>	

																						<button	onClick={this.toggleUpdate}>	

																										Should	update?	

																										{JSON.stringify({	dontUpdate	})}	

																						</button>	

																						<button	onClick={this.toggleUnmount}>	

																										Should	unmount?	

																										{JSON.stringify({	unmount	})}	

																						</button>	

																		</React.Fragment>	

)	

										}	

						}	

5.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

6.	 Save	the	file.

449

Let's	test	it...
To	see	the	previous	work	in	action,	perform	the	following	steps::

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 Use	the	buttons	to	toggle	the	state	of	the	component	and
understand	how	the	life	cycle	methods	affect	the	component's
functionality.

450

Working	with
React.PureComponent
React.PureComponent	is	similar	to	React.Component.	The	difference	is	that
React.Component	implements	the	shouldComponentUpdate	life	cycle	method
internally	to	make	a	shallow	comparison	of	the	state	and	props	to	decide
if	the	component	should	update	or	not.

451

Getting	ready
In	this	recipe,	you	will	write	two	components,	one	extending
React.PureComponent,	and	another	extending	React.Component,	in	order	to	see
how	they	behave	when	the	same	properties	are	passed	to	them.	Before
you	start,	create	a	new	package.json	file	with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install		

452

How	to	do	it...
Build	a	React	application	to	illustrate	and	understand	better	how
React.PureComponent	works.	Create	two	components:	one	will	extend
React.Component	while	the	other	will	extend	React.PureComponent.	Both
components	will	be	placed	inside	another	React	component	named	App
that	will	update	its	state	around	every	second.	Using	the	life	cycle
method,componentDidUpdate,	in	both	components,	we	will	log	on	the
console	which	one	of	them	gets	updated	when	the	parent	component	App
updates.

First,	create	an	index.html	file	where	the	react	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>React.PureComponent</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./pure-component.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Then,	follow	the	next	steps	to	build	the	React	application:

453

1.	 Create	a	new	file	named	pure-component.js.
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	a	Button	class	component	extending	the	React.PureComponent
class:

						class	Button	extends	React.PureComponent	{	

										componentDidUpdate()	{	

														console.log('Button	Component	did	update!')	

										}	

										render()	{	

														return	(

																		<button>{this.props.children}</button>	

)	

										}	

						}	

4.	 Define	a	Text	class	component	extending	the	React.Component
class:

						class	Text	extends	React.Component	{	

										componentDidUpdate()	{	

														console.log('Text	Component	did	update!')	

										}	

										render()	{	

														return	this.props.children	

										}	

						}	

5.	 Define	a	simple	App	component	that	will	render	both
components.	The	App	component	will	set	a	timer	once	it's
mounted	and	update	the	state	around	every	second:

454

						class	App	extends	React.Component	{	

										state	=	{	

														counter:	0,	

										}	

										componentDidMount()	{	

														this.intervalId	=	setInterval(()	=>	{	

																		this.setState(({	counter	})	=>	({	

																						counter:	counter	+	1,	

																		}))	

														},	1000)	

										}	

										componentWillUnmount()	{	

														clearInterval(this.intervalId)	

										}	

										render()	{	

														const	{	counter	}	=	this.state	

														return	(

																		<React.Fragment>	

																						<h1>Counter:	{counter}</h1>	

																						<Text>I'm	just	a	text</Text>	

																						<Button>I'm	a	button</Button>	

																		</React.Fragment>	

)	

										}	

						}	

6.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

7.	 Save	the	file.

455

Let's	test	it...
To	see	the	previous	work	in	action,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/		

3.	 The	counter	will	increase	by	one	around	every	second.	Open
the	developer	tools	in	your	browser	and	check	the	console
output.	You	should	see	the	following:

						[N]	Text	Component	did	update!	

456

How	it	works...
Because	React.PureComponent	implements	the	shouldComponentUpdatelife	cycle
method	internally,	it	doesn't	update	the	Button	component	because	its
state	or	props	have	not	changed.	It	does,	however,	update	the	Text
component	because	shouldComponentUpdate	returns	true	by	default,	telling
React	to	update	the	component,	even	though	its	props	or	state	have	not
changed.

457

React	event	handlers
React's	event	system	uses	internally	a	wrapper,	called	SyntheticEvent,
around	the	native	HTML	DOM	events	for	cross-browser	support.	React
events	follow	the	W3C	spec,	which	can	be	found	at
https://www.w3.org/TR/DOM-Level-3-Events/.

React	event	names	are	camel-cased	as	opposed	to	HTML	DOM	events,
which	are	lowercased.	For	instance,	the	HTML	DOM	event	onclick
would	be	called	onClick	in	React.	For	a	complete	list	of	supported
events,	visit	the	React	official	documentation	about	events:	https://reactjs
.org/docs/events.html

https://www.w3.org/TR/DOM-Level-3-Events/
https://reactjs.org/docs/events.html

458

Getting	ready
In	this	recipe,	you	will	write	a	component	to	see	how	it	is	defined	and
how	it	works.	Before	you	start,	create	a	new	package.json	file	with	the
following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install	

459

How	to	do	it...
Firstly,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>React	Events	Handlers</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./events.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Next,	write	a	component	defining	an	event	handler	for	the	onClick	event:

1.	 Create	a	new	file	named	events.js.
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

460

3.	 Define	a	class	component	that	will	render	a	h1	React	element
and	a	button	React	element,	which	will	trigger	the	onBtnClick
method	whenever	it's	clicked:

						class	App	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

														this.state	=	{	

																		title:	'Untitled',	

														}	

														this.onBtnClick	=	this.onBtnClick.bind(this)	

										}	

										onBtnClick()	{	

														this.setState({	

																		title:	'Hello	there!',	

														})	

										}	

										render()	{	

														return	(

																		<section>	

																						<h1>{this.state.title}</h1>	

																						<button	onClick={this.onBtnClick}>	

																										Click	me	to	change	the	title	

																						</button>	

																		</section>	

)	

										}	

						}	

4.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

5.	 Save	the	file.

461

Let's	test	it...
To	see	the	application	working,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

							npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 Click	on	the	button	to	change	the	title.

462

How	it	works...
React	events	are	passed	to	React	elements	as	props.	For	instance,	we
passed	the	onClick	prop	to	the	button	React	element	and	a	reference	to	a
callback	function	that	we	expect	to	be	called	when	the	user	clicks	on
the	button.

463

There's	more...
Did	you	notice	that	we	have	been	using	the	bind	very	often?	When	a
method	is	passed	as	a	prop	to	a	child	component,	it	loses	the	context	of
this,	so	binding	to	the	context	is	necessary.	Take	the	following	example:

class	Example	{	

				fn()	{	return	this	}	

}	

const	examp	=	new	Example()	

const	props	=	examp.fn	

const	bound	=	examp.fn.bind(examp)	

console.log('1:',	typeof	examp.fn())	

console.log('2:',	typeof	props())	

console.log('3:',	typeof	bound())	

The	output	displayed	will	be:

1:	object	

2:	undefined	

3:	object	

Even	though	the	constant	props	has	a	reference	to	the	fn	method	of	the
examp	instance	of	the	Example	class,	it	loses	the	context	of	this.	That's	why
binding	allows	you	to	keep	the	original	context.	In	React,	we	bind	a
method	to	the	original	context	of	this	to	be	able	to	use	our	own	instance
methods,	such	as	setState,	when	passing	the	function	down	to	child
components.	Otherwise,	the	context	of	this	will	be	undefined	and	the
function	will	fail.

464

Conditional	rendering
of	components
Usually	when	building	complex	UIs,	you	would	need	to	render	a
component	or	a	React	element	according	to	the	state	or	props	received.

React	components	allow	JavaScript	to	be	executed	within	curly
brackets	and	it	can	be	used	with	the	conditional	ternary	operator	to
decide	which	component	or	React	element	to	render.	For	instance:

const	Meal	=	({	timeOfDay	})	=>	(

				{timeOfDay	===	'noon'	

								?	'Pizza'	

								:	'Sandwich'	

				}		

)	

This	also	could	have	been	written	as:

const	Meal	=	({	timeOfDay	})	=>	(

				<span	children={timeOfDay	===	'noon'	

								?	'Pizza'	

								:	'Sandwich'	

				}	/>		

)	

If	passing	"noon"	as	the	timeOfDay	property	value,	it	will	generate	the
following	HTML	content:

Pizza	

Or	the	following	when	the	timeOfDay	property	is	not	set	to	"noon":

465

Sandwich	

466

Getting	ready
In	this	recipe,	you	will	build	a	component	that	that	renders	one	of	its
children	according	to	a	given	condition.	Firstly,	create	a	new	package.json
file	with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install

467

How	to	do	it...
Write	a	React	component	that	will	decide	which	of	two	different	React
elements,	given	as	children	to	your	component,	will	be	displayed
according	to	a	condition	passed	as	a	property.	If	the	condition	is	true,
then	the	first	child	is	displayed.	Otherwise,	the	second	child	should	be
displayed.

First,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Conditional	Rendering</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./conditions.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Then,	create	a	new	file	containing	the	logic	of	the	React	application	and
your	component:

1.	 Create	a	new	file	named	conditions.js

468

2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	a	functional	component	named	Toggle	that	will	receive	a
condition	property	that	will	be	evaluated	to	define	which	React
element	to	render.	It	expects	to	receive	two	React	elements	as
children:

						const	Toggle	=	({	condition,	children	})	=>	(

										condition	

														?	children[0]	

														:	children[1]	

)	

4.	 Define	a	class	component	named	App	that	will	render	a	React
element	based	on	the	defined	condition.	When	the	button	is
clicked,	it	will	toggle	the	color	state:

						class	App	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

														this.state	=	{	

																		color:	'blue',	

														}	

														this.onClick	=	this.onClick.bind(this)	

										}	

										onClick()	{	

														this.setState(({	color	})	=>	({	

																		color:	(color	===	'blue')	?	'lime'	:	'blue'	

														}))	

										}	

										render()	{	

														const	{	color	}	=	this.state	

														return	(

																		<React.Fragment>	

																						<Toggle	condition={color	===	'blue'}>	

469

																										<p	style={{	color	}}>Blue!</p>	

																										<p	style={{	color	}}>Lime!</p>	

																						</Toggle>	

																						<button	onClick={this.onClick}>	

																										Toggle	Colors	

																						</button>	

																		</React.Fragment>	

)	

										}	

						}	

5.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

6.	 Save	the	file.

470

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 Click	on	the	button	to	toggle	which	React	element	is	displayed

471

How	it	works...
Because	the	children	property	can	be	an	array	of	React	elements,	we	can
access	each	individual	React	element	and	decide	which	one	to	render.
We	used	the	condition	property	to	evaluate	if	the	given	condition	is
truthy	to	render	the	first	React	element.	Otherwise,	if	the	value	is	falsy,
then	the	second	React	element	is	rendered.

472

Rendering	lists	with
React
React	allows	you	to	pass	a	collection	of	React	elements	or	components
as	children	in	the	form	of	an	array.	For	instance:

				

						{[

									<li	key={0}>One,	

									<li	key={1}>Two,	

]}	

				

Collections	of	React	elements	or	components	must	be	given	a	special
props	property	named	key.	This	property	lets	React	know	which	of	the
elements	in	the	collection	have	changed,	moved,	or	been	removed
in/from	the	array	when	an	update	occurs.

473

Getting	ready
In	this	recipe,	you	will	build	a	utility	component	that	will	map	each
item	of	an	array	to	a	component's	props	and	render	them	as	a	list.
Before	you	start,	create	a	new	package.json	file	with	the	following
content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install

474

How	to	do	it...
Create	a	React	component	named	MapArray,	which	will	do	the	job	of
mapping	the	items	of	an	array	to	a	React	component.

First,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Rendering	Lists</title>	

						</head>	

						<body>	

									<div	role="main"></div>	

										<script	src="./lists.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Then,	perform	the	following	steps	to	build	the	React	application:

1.	 Create	a	new	file	named	lists.js.
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

475

3.	 Define	a	functional	component	called	MapArray	that	will	expect
to	receive	three	properties:	from,	which	is	expected	to	be	an
array	of	values,	mapToProps,	which	is	expected	to	be	a	callback
function	for	mapping	values	to	properties,	and	lastly,	children,
which	is	expected	to	receive	a	React	component	where	the
values	of	the	array	will	be	mapped	to:

						const	MapArray	=	({	

										from,	

										mapToProps,	

										children:	Child,	

						})	=>	(

										<React.Fragment>	

														{from.map((item)	=>	(

																		<Child	{...mapToProps(item)}	/>	

))}	

										</React.Fragment>	

)	

4.	 Define	a	TodoItem	component	that	expects	to	receive	two
properties,	done	and	label:

						const	TodoItem	=	({	done,	label	})	=>	(

											

														<input	type="checkbox"	checked={done}	readOnly	/>	

														<label>{label}</label>	

											

)	

5.	 Define	an	array	that	contains	a	to-do	list	of	object	values:

						const	list	=	[

										{	id:	1,	done:	true,	title:	'Study	for	Chinese	exam'	},	

										{	id:	2,	done:	false,	title:	'Take	a	shower'	},	

										{	id:	3,	done:	false,	title:	'Finish	chapter	6'	},	

476

]	

6.	 Define	a	callback	function	that	will	map	the	array's	object
values	to	the	expected	properties	of	the	TodoItem	component.
Rename	the	id	property	as	key,	and	the	title	property	as	label:

						const	mapToProps	=	({	id:	key,	done,	title:	label	})	=>	({	

										key,	

										done,	

										label,	

						})	

7.	 Define	a	TodoListApp	component	that	will	make	use	of	the	MapArray
component	to	create	an	instance	of	TodoItem	for	every	item	in	the
to-do	list	array:

						const	TodoListApp	=	({	items	})	=>	(

											

														<MapArray	from={list}	mapToProps={mapToProps}>	

																		{TodoItem}	

														</MapArray>	

											

)	

8.	 Render	the	application:

						ReactDOM.render(

										<TodoListApp	items={list}	/>,	

										document.querySelector('[role="main"]'),	

)	

9.	 Save	the	file.

477

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 A	list	of	to-do	items	should	be	displayed:

List	of	to-do	items

478

How	it	works...
Look	at	the	following	code:

	

			<MapArray	from={list}	mapToProps={mapToProps}>	

						{TodoItem}	

			</MapArray>	

	

This	works	pretty	much	the	same	as	writing:

	

			<React.Fragment>	

						{from.map((item)	=>	(

									<TodoItem	{...mapToProps(item)	}	/>	

))}	

			</React.Fragment>	

	

However,	MapArray	acts	as	a	helper	component	to	do	the	same	job	while
keeping	the	code	more	readable.

Have	you	noticed	that	the	TodoItem	component	expects	only	two
properties?	However,	we're	also	passing	the	id	of	the	items	as	key.	If	the
key	property	is	not	passed,	then	while	rendering	the	components,	a
warning	will	be	displayed.

479

Working	with	forms	and
inputs	in	React
Form-associated	elements,	such	as	<input>	and	<textarea>,	usually
maintain	their	own	internal	state	and	update	it	according	to	the	user
input.	In	React,	when	the	input	of	a	form-associated	element	is
managed	using	the	React	state,	it's	called	a	controlled	component.

By	default,	in	React,	if	the	value	property	of	an	input	is	not	set,	then	the
input	internal	state	can	be	mutated	by	the	user	input.	However,	if	the
value	property	is	set,	then	the	input	is	read-only	and	it	expects	React	to
manage	the	user	input	by	using	the	onChange	React	event	and	manage	the
input's	state	using	the	React	state	to	update	it	if	necessary.	For	example,
this	input	React	element	will	be	rendered	as	read-only:

<input	type="text"	value="Ms.Huang	Jx"	/>	

However,	because	React	expects	to	find	an	onChange	event	handler,	the
previous	code	will	output	a	warning	message	on	the	console.	To	fix
this,	we	can	provide	to	the	onChange	property	a	callback	function	to
handle	the	user	input:

<input	type="text"	value="Ms.Huang	Jx"	onChange={event	=>	null}	/>	

Because	the	user	input	is	handled	by	React	and,	in	the	previous
example,	we	don't	update	the	input's	value,	then	the	input	will	appear	to
be	read-only.	The	previous	code	is	similar	to	just	setting	a	readOnly
property	instead	of	providing	a	useless	onChange	property.

React	also	allows	you	to	define	uncontrolled	components,	which
basically	keep	out	of	React's	control	what	or	input	how	the	input	is
updated.	For	instance,	when	a	third-party	library	is	used	instead	to	act

480

over	the	input,	uncontrolled	components	have	a	property	called
defaultValue,	which	is	similar	to	the	value	property.	However,	it	lets	the
input	control	its	internal	state	by	the	user	input	and	not	by	React.	That
means	a	form-associated	element	with	a	defaultValue	property	allows	its
state	to	be	mutated	by	the	user	input:

<input	type="text"	defaultValue="Ms.Huang	Jx"	/>	

As	opposed	to	using	the	value	property,	you	can	now	type	in	the	input
box	to	change	its	value	because	the	internal	state	of	the	input	is
mutable.

481

Getting	ready
In	this	recipe,	you	will	build	a	simple	login	form	component.	Before
you	start,	create	a	new	package.json	file	with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install

482

How	to	do	it...
Define	a	class	component	named	LoginForm	that	will	handle	username	input
and	password	input.

Firstly,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Forms	and	Inputs</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./forms.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Next,	build	the	LoginForm	component	and	use	the	power	given	to	you	by
React	controlled	components	over	the	input's	state	to	also	disallow
numbers	on	the	username	input:

1.	 Create	a	new	file	named	forms.js.
2.	 Import	the	React	and	ReactDOM	libraries:

483

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	a	class	component	named	LoginForm.	Within	the	class,
define	an	event	handler	for	the	input	change,	and	check	the
username	input's	value	to	disallow	introducing	numbers:

						class	LoginForm	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

														this.state	=	{	

																		username:	'',	

																		password:	'',	

														}	

														this.onChange	=	this.onChange.bind(this)	

										}	

										onChange(event)	{	

														const	{	name,	value	}	=	event.target	

														this.setState({	

																		[name]:	name	===	'username'	

																						?	value.replace(/d/gi,	'')	

																						:	value	

														})	

										}	

										render()	{	

														return	(

																		<form>	

																						<input	

																										type="text"	

																										name="username"	

																										placeholder="Username"	

																										value={this.state.username}	

																										onChange={this.onChange}	

																						/>	

																						<input	

																										type="password"	

																										name="password"	

																										placeholder="Password"	

																										value={this.state.password}	

																										onChange={this.onChange}	

																						/>	

																						<pre>	

																										{JSON.stringify(this.state,	null,	2)}	

																						</pre>	

																		</form>	

484

)	

										}	

						}	

4.	 Render	the	application:

						ReactDOM.render(

										<LoginForm	/>,	

										document.querySelector('[role="main"]'),	

)	

5.	 Save	the	file.

485

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 Try	to	introduce	a	number	in	the	username	input	to	see	how	the
validation	against	numbers	is	working

486

How	it	works...
We	define	an	onChange	event	handler	used	in	both	input	elements.
However,	we	check	if	the	input's	name	is	username	to	decide	if	the
validation	should	be	applied.	RegExp	is	used	to	test	for	numbers	in	the
input	and	replace	them	with	an	empty	string.	That's	why	numbers	are
not	displayed	while	typing	on	the	username	input.

487

Understanding	refs	and
how	to	use	them
In	the	usual	workflow,	React	components	communicate	with	their
children	by	passing	props.	However,	there	are	a	few	cases	where	it's
needed	to	access	the	instance	of	a	child	to	communicate	or	modify	its
behavior.	React	uses	refs	to	allow	us	to	access	the	instance	of	a	child.

It's	important	to	understand	that	React	components'	instances	give	you
access	to	their	instance	methods	and	properties.	However,	an	instance
of	a	React	element	is	an	instance	of	an	HTML	DOM	element.	Refs	are
accessed	by	giving	a	ref	attribute	to	the	React	component	or	React
element.	It	expects	the	value	to	be	a	callback	function	that	will	be
invoked	once	the	instance	is	created,	providing	a	reference	to	the
instance	in	the	first	argument	passed	to	the	callback	function.

React	provides	a	helper	function	named	createRef	to	define	function
callbacks	for	setting	refs	correctly.	Take,	for	example,	the	following
code,	which	obtains	a	reference	of	a	React	component	and	a	React
element:

class	Span	extends	React.Component	{	

				render()	{	

								return	{this.props.children}	

				}	

}	

class	App	extends	React.Component	{	

				rf1	=	React.createRef()	

				rf2	=	React.createRef()	

				componentDidMount()	{	

								const	{	rf1,	rf2	}	=	this	

								console.log(rf1.current	instanceof	HTMLSpanElement)	

								console.log(rf2.current	instanceof	Span)	

				}	

				render()	{	

488

								return	(

												<React.Fragment>	

																	

																	

												</React.Fragment>	

)	

				}	

}	

In	this	example,	the	console	will	output	true	twice:

true	//	rf1.current	instanceof	HTMLSpanElement	

true	//	rf2.current	instanceof	Span	

This	proves	what	we	have	just	learned.

Functional	components	do	not	have	refs.	Thus,	giving	a	ref	property	to	a	functional
component	will	display	a	warning	in	the	console	and	fail.

Refs	are	especially	useful	for	working	with	uncontrolled	components	in
the	following	cases:

Integration	with	third-party	libraries

Accessing	an	HTML	DOM	element's	native	methods	that	are
otherwise	inaccessible	from	React,	such	as	the
HTMLElement.focus()	method

Using	certain	web	APIs,	such	as	the	Selection	Web	API,	the
Web	Animations	API,	and	media	playback	methods

489

Getting	ready
In	this	recipe,	you	will	work	with	uncontrolled	components	and	use	refs
to	send	a	custom	event	to	a	form	HTML	element.	Before	you	start,
create	a	new	package.json	file	with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install

490

How	to	do	it...
Define	a	LoginForm	class	component	that	will	render	a	form	with	two
inputs:	one	for	a	username	and	the	other	for	a	password.	Include	a
button	outside	of	the	form	React	element,	which	will	be	used	for
triggering	the	onSubmit	event	on	the	form	React	element.

Firstly,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Refs</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./refs.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Now,	start	building	the	React	application:

1.	 Create	a	new	file	named	refs.js.
2.	 Import	the	React	and	ReactDOM	libraries:

491

						import	*	as	React	from	'react'	

import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	a	class	component	named	LoginForm	that	will	render	the
form	and	a	button	that	will	trigger	the	onSubmit	form	event,	using
refs,	when	clicked:

						class	LoginForm	extends	React.Component	{	

										refForm	=	React.createRef()	

										constructor(props)	{	

														super(props)	

														this.state	=	{}	

														this.onSubmit	=	this.onSubmit.bind(this)	

														this.onClick	=	this.onClick.bind(this)	

										}	

										onSubmit(event)	{	

														const	form	=	this.refForm.current	

														const	data	=	new	FormData(form)	

														this.setState({	

																		user:	data.get('user'),	

																		pass:	data.get('pass'),	

														})	

														event.preventDefault()	

										}	

										onClick(event)	{	

														const	form	=	this.refForm.current	

														form.dispatchEvent(new	Event('submit'))	

										}	

										render()	{	

														const	{	onSubmit,	onClick,	refForm,	state	}	=	this	

														return	(

																		<React.Fragment>	

																						<form	onSubmit={onSubmit}	ref={refForm}>	

																										<input	type="text"	name="user"	/>	

																										<input	type="text"	name="pass"	/>	

																						</form>	

																						<button	onClick={onClick}>LogIn</button>	

																						<pre>{JSON.stringify(state,	null,	2)}</pre>	

																		</React.Fragment>	

)	

										}	

						}	

492

4.	 Render	the	application:

						ReactDOM.render(

										<LoginForm	/>,	

										document.querySelector('[role="main"]'),	

)	

5.	 Save	the	file.

493

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

494

How	it	works...
1.	 Click	on	the	LogIn	button	to	test	that	the	form	onSubmit	events

gets	triggered.
2.	 First,	a	reference	to	the	instance	of	the	form	DOM	element	is

kept	in	an	instance	property	called	reform.
3.	 Then,	once	the	button	is	submitted,	we	use	the	EventTarget	web

API	dispatchEvent	method	to	dispatch	a	custom	event	submit	on
the	form	DOM	element.

4.	 Then,	the	dispatched	submit	method	is	caught	by	the	React
SyntheticEvent.

5.	 Finally,	React	triggers	the	callback	method	passed	to	the	form's
onSubmit	property.

495

Understanding	React
portals
React	portals	allow	us	to	render	child	components	in	a	different	DOM
element	outside	of	the	DOM	tree	generated	by	the	parent	component
while	keeping	the	React	tree	as	if	the	component	is	inside	the	DOM	tree
generated	by	the	parent	component.	For	instance,	even	though	child
components	are	located	in	a	different	DOM	node,	the	events	generated
in	a	child	component	bubble	up	to	the	React	parent	component.

React	portals	are	created	using	the	ReactDOM	library's	createPortal
method	and	it	has	the	same	signature	as	the	render	method:

ReactDOM.createPortal(

				ReactComponent,	

				DOMNode,		

)	

However,	the	difference	between	render	and	createPortal	is	that	the	latter
returns	a	special	tag	that	is	used	in	the	React	tree	to	identify	this
element	as	a	React	portal	and	to	use	it	as	if	it	were	a	React	element.	For
instance:

<article>	

			{ReactDOM.createPortal(

						<h1>Example</h1>,	

						document.querySelector('[id="heading"]'),	

)}	

</article>	

496

Getting	ready
Before	you	start,	create	a	new	package.json	file	with	the	following
content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install

497

How	to	do	it...
First,	create	an	index.html	file	where	the	React	application	will	be
rendered,	containing	as	well	an	HTML	header	tag	where	a	React	portal
element	will	be	rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Portals</title>	

						</head>	

						<body>	

										<header	id="heading"></header>	

										<div	role="main"></div>	

										<script	src="./portals.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Next,	build	a	React	application	that	will	render	a	paragraph	and	an	h1
HTML	element	outside	of	the	tree	to	a	header	HTML	element:

1.	 Create	a	new	file	named	portals.js.
2.	 Import	the	React	and	ReactDOM	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

498

3.	 Define	a	functional	component	named	Header	and	create	a	portal
to	render	the	children	to	a	different	DOM	element:

						const	Header	=	()	=>	ReactDOM.createPortal(

										<h1>React	Portals</h1>,	

										document.querySelector('[id="heading"]'),	

)	

4.	 Define	a	functional	component	named	App	that	will	render	a
React	element	and	the	Header	React	component:

						const	App	=	()	=>	(

										<React.Fragment>	

														<p>Hello	World!</p>	

														<Header	/>	

										</React.Fragment>	

)	

5.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

6.	 Save	the	file.

499

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 The	generated	HTML	DOM	tree	would	look	similar	to	this:

						<header	id="heading">	

									<h1>React	Portals</h1>	

						</header>	

						<section	role="main">	

									<p>Hello	World!</p>	

						</section>	

500

How	it	works...
Even	though	in	the	React	tree	the	Header	component	appears	to	be
rendered	after	the	paragraph	p	HTML	tag,	the	rendered	Header
component	renders	before	it.	That's	because	the	Header	component	is
actually	rendered	on	a	header	HTML	tag	that	appears	before	the	section
HTML	tag	where	the	main	application	is	rendered.

501

Catching	errors	with
error	boundary
components
Error	boundary	components	are	just	React	components	that
implement	the	componentDidCatch	life	cycle	method	to	catch	errors	in	their
children.	They	catch	errors	in	constructor	methods	when	a	class
component	is	initialized	but	fails,	in	life	cycle	methods,	and	while
rendering.	Errors	that	cannot	be	caught	are	from	asynchronous	code,
event	handlers,	and	errors	in	the	error	component	boundary	itself.

The	componentDidCatch	life	cycle	method	receives	two	arguments:	the	first
one	is	an	error	object	while	the	second	received	argument	is	an	object
containing	a	componentStack	property	with	a	friendly	stack	trace	that
describes	where	in	the	React	tree	a	component	failed.

502

Getting	ready
In	this	recipe,	you	will	build	an	error	boundary	component	and	provide
a	fallback	UI	when	there	is	an	error	while	rendering.	Before	you	start,
create	a	new	package.json	file	with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"babel-core":	"6.26.3",	

				"parcel-bundler":	"1.8.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

						npm	install	

503

How	to	do	it...
First,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Catching	Errors</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./error-boundary.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Next,	define	an	error	boundary	component	that	will	catch	errors	and
render	a	fallback	UI	displaying	information	where	the	error	happened
and	the	error	message.	Define	as	well	an	App	component	and	create	a
button	React	element	that	when	clicked	will	cause	the	application	to	fail
while	setting	the	state:

1.	 Create	a	new	file	named	error-boundary.js.
2.	 Import	the	React	and	ReactDOM	libraries:

504

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

3.	 Define	an	ErrorBoundary	component	that	will	display	a	fallback
message	when	the	application	fails	to	render:

						class	ErrorBoundary	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

														this.state	=	{	

																		hasError:	false,	

																		message:	null,	

																		where:	null,	

														}	

										}	

										componentDidCatch(error,	info)	{	

														this.setState({	

																		hasError:	true,	

																		message:	error.message,	

																		where:	info.componentStack,	

														})	

										}	

										render()	{	

														const	{	hasError,	message,	where	}	=	this.state	

														return	(hasError	

																		?	<details	style={{	whiteSpace:	'pre-wrap'	}}>	

																						<summary>{message}</summary>	

																						<p>{where}</p>	

																		</details>	

																		:	this.props.children	

)	

										}	

						}	

4.	 Define	a	class	component	named	App	that	will	render	a	button
React	element.	Once	the	button	is	clicked,	it	will	purposely
throw	an	error:

						class	App	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

505

														this.onClick	=	this.onClick.bind(this)	

										}	

										onClick()	{	

														this.setState(()	=>	{	

																		throw	new	Error('Error	while	setting	state.')	

														})	

										}	

										render()	{	

														return	(

																		<button	onClick={this.onClick}>	

																						Buggy	button!	

																		</button>	

)	

										}	

						}	

5.	 Render	the	application	wrapping	the	App	within	the	ErrorBoundary
component:

						ReactDOM.render(

										<ErrorBoundary>	

														<App	/>	

										</ErrorBoundary>,	

										document.querySelector('[role="main"]'),	

)	

6.	 Save	the	file.

506

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 Click	on	the	button	to	cause	the	application	to	fail
4.	 A	fallback	UI	is	displayed	showing	the	following	error:

						Error	while	setting	state.		

										in	App	

										in	ErrorBoundary	

507

Type	checking
properties	with
PropTypes
React	allows	you	to	implement	runtime	type	checking	of	components'
properties.	It's	useful	to	catch	bugs	and	make	sure	that	your	components
are	receiving	props	correctly.	This	can	be	easily	done	by	just	setting	a
static	propType	property	on	your	components.	For	instance:

class	MyComponent	extends	React.Component	{	

			static	propTypes	=	{	

						children:	propTypes.string.isRequired,	

			}	

			render()	{	

						return{this.props.children}	

			}	

}	

The	previous	code	will	require	MyComponent's	children	property	to	be	a
string.	Otherwise,	if	a	different	property	type	is	given,	React	will
display	a	warning	in	the	console.

propTypes'	methods	are	functions	that	get	triggered	when	the
component's	instance	is	created	to	check	if	the	given	props	match	the
propTypes	schema.

propTypes	have	an	extensive	list	of	methods	that	can	be	used	for	the
validation	of	properties.	You	can	find	the	complete	list	in	the	React
official	documentation:	https://reactjs.org/docs/typechecking-with-proptypes.html.

https://reactjs.org/docs/typechecking-with-proptypes.html

508

Getting	ready
In	this	recipe,	you	will	see	and	write	custom	validation	rules	for
checking	property	types.	Before	you	start,	create	a	new	package.json	file
with	the	following	content:

{	

		"scripts":	{	

				"start":	"parcel	serve	-p	1337	index.html"	

		},	

		"devDependencies":	{	

				"babel-core":	"6.26.3",	

				"babel-plugin-transform-class-properties":	"6.24.1",	

				"babel-preset-env":	"1.6.1",	

				"babel-preset-react":	"6.24.1",	

				"parcel-bundler":	"1.8.1",	

				"prop-types":	"15.6.1",	

				"react":	"16.3.2",	

				"react-dom":	"16.3.2"	

		}	

}	

Next,	create	a	babel	configuration	file	as	.babelrc,	adding	the	following
content:

{	

				"presets":	["env","react"],	

				"plugins":	["transform-class-properties"]	

}	

Then,	install	the	dependencies	by	opening	a	Terminal	and	running:

npm	install	

509

How	to	do	it...
First,	create	an	index.html	file	where	the	React	application	will	be
rendered:

1.	 Create	a	new	file	named	index.html
2.	 Add	the	following	HTML	code:

						<!DOCTYPE	html>	

						<html	lang="en">	

						<head>	

										<meta	charset="UTF-8">	

										<title>Type	Checking</title>	

						</head>	

						<body>	

										<div	role="main"></div>	

										<script	src="./type-checking.js"></script>	

						</body>	

						</html>	

3.	 Save	the	file

Next,	define	a	Toggle	class	component	that	expects	to	receive	two	React
elements	as	children.	Use	PropTypes	to	create	a	custom	validation	rule	to
check	that	the	children	property	is	an	array	of	React	elements	and	the
component	is	receiving	exactly	two	React	elements:

1.	 Create	a	new	file	named	type-checking.js.
2.	 Import	the	React,	ReactDOM,	and	PropTypes	libraries:

						import	*	as	React	from	'react'	

						import	*	as	ReactDOM	from	'react-dom'	

510

						import	*	as	propTypes	from	'prop-types'	

3.	 Define	a	class	component	named	Toggle.	Use	propTypes	for	type-
checking	the	condition	and	children	properties.	Use	a	custom
propType	to	check	if	children	is	an	array	of	React	elements	and
that	it	contains	exactly	two	React	elements:

						class	Toggle	extends	React.Component	{	

										static	propTypes	=	{	

														condition:	propTypes.any.isRequired,	

														children:	(props,	propName,	componentName)	=>	{	

																		const	customPropTypes	=	{	

																						children:	propTypes	

																										.arrayOf(propTypes.element)	

																										.isRequired	

																		}	

																		const	isArrayOfElements	=	propTypes	

																						.checkPropTypes(

																										customPropTypes,	

																										props,	

																										propName,	

																										componentName,	

)	

																		const	children	=	props[propName]	

																		const	count	=	React.Children.count(children)	

																		if	(isArrayOfElements	instanceof	Error)	{	

																						return	isArrayOfElements	

																		}	else	if	(count	!==	2)	{	

																						return	new	Error(

																										`"${componentName}"`	+	

																										`	expected	${propName}`	+	

																										`	to	contain	exactly	2	React	elements`	

)	

																		}	

														}	

										}	

										render()	{	

														const	{	condition,	children	}	=	this.props	

														return	condition	?	children[0]	:	children[1]	

										}	

						}	

4.	 Define	a	class	component	named	App	that	will	render	the	Toggle

511

component.	Provide	three	React	elements	as	its	children	and	a
button	that	when	clicked	will	toggle	the	value	property	of	state
from	true	to	false	and	vice	versa:

						class	App	extends	React.Component	{	

										constructor(props)	{	

														super(props)	

														this.state	=	{	value:	false	}	

														this.onClick	=	this.onClick.bind(this)	

										}	

										onClick()	{	

														this.setState(({	value	})	=>	({	

																		value:	!value,	

														}))	

										}	

										render()	{	

														const	{	value	}	=	this.state	

														return	(

																		<React.Fragment>	

																						<Toggle	condition={value}>	

																										<p	style={{	color:	'blue'	}}>Blue!</p>	

																										<p	style={{	color:	'lime'	}}>Lime!</p>	

																										<p	style={{	color:	'pink'	}}>Pink!</p>	

																						</Toggle>	

																						<button	onClick={this.onClick}>	

																										Toggle	Colors	

																						</button>	

																		</React.Fragment>	

)	

										}	

						}	

5.	 Render	the	application:

						ReactDOM.render(

										<App	/>,	

										document.querySelector('[role="main"]'),	

)	

6.	 Save	the	file.

512

Let's	test	it...
To	run	and	test	the	application,	perform	the	following	steps:

1.	 Open	a	Terminal	at	the	root	of	your	project	directory	and	run:

						npm	start

2.	 Then,	open	a	new	tab	in	your	web	browser	and	go	to:

						http://localhost:1337/

3.	 The	console	in	your	browser	will	display	the	following
warning:

						Warning:	Failed	prop	type:	"Toggle"	expected	children	to	

contain	exactly	2	React							elements	

										in	Toggle	(created	by	App)	

										in	App	

4.	 Clicking	the	button	will	toggle	between	the	first	two	React
elements	while	the	third	React	element	will	be	ignored

513

How	it	works...
We	define	a	custom	function	validator	for	the	children	property.	Inside
the	function,	we	first	use	the	built-in	propTypes	functions	to	check	if
children	is	an	array	of	React	elements.	If	the	result	of	the	validation	is
not	an	instance	of	Error,	then	we	use	the	React	Children's	count	utility
method	to	know	how	many	React	elements	were	given	and	we	return
an	error	if	the	number	of	React	elements	in	children	is	not	2.

514

There's	more...
Did	you	notice	that	we	used	the	propTypes.checkPropTypes	method?	It's	a
utility	function	that	allows	us	to	check	for	propTypes	even	outside	React.
For	instance:

const	pTypes	=	{	

			name:	propTypes.string.isRequired,	

			age:	propTypes.number.isRequired,	

}	

const	props	=	{	

			name:	'Huang	Jx',	

			age:	20,	

}	

propTypes.checkPropTypes(pTypes,	props,	'property',	'props')	

The	pTypes	object	works	as	a	schema	providing	validation	functions
from	propTypes.	The	props	constant	is	just	a	plain	object	containing
properties	defined	in	pTypes.

Running	the	previous	example	won't	output	any	warning	in	the	console
since	all	properties	in	props	are	valid.	However,	change	the	props	object
to:

const	props	=	{	

			name:	20,	

			age:	'Huang	Jx',	

}	

Then	we	will	see	the	following	warning	in	the	console	output:

Warning:	Failed	property	type:	Invalid	property	`name`	of	type	

`number`	supplied	to	`props`,	expected	`string`.	

Warning:	Failed	property	type:	Invalid	property	`age`	of	type	

`string`	supplied	to	`props`,	expected	`number`.	

515

The	checkPropTypes	utility	method	has	the	following	signature:

checkPropTypes(typeSpecs,	values,	location,	componentName,	getStack)	

Here,	typeSpecs	refers	to	an	object	containing	propTypes	function
validators.	The	values	argument	expects	to	receive	an	object	whose
values	need	to	be	validated	against	typeSpecs.	componentName	refers	to	the
source's	name,	which	usually	is	a	component's	name	that	is	used	in	the
warning	message	to	display	where	the	Error	was	originated.	The	last
argument,	getStack,	is	optional	and	it's	expected	to	be	a	callback
function	that	should	return	a	Stack	Trace	that	is	added	at	the	end	of	the
warning	message	to	better	describe	where	exactly	the	error	was
originated.

propTypes	are	used	only	in	development	and	for	using	the	production
build	of	React,	you	must	set	up	the	bundler	to	replace	process.env.NODE_ENV
with	"production".	This	way,	propTypes	are	removed	in	the	production	build
of	your	application.

516

Other	Books	You	May
Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by
Packt:

Full-Stack	React	Projects
Shama	Hoque

ISBN:	978-1-78883-553-4

Set	up	your	development	environment	and	develop	a	MERN
application

Implement	user	authentication	and	authorization	using	JSON
Web	Tokens

Build	a	social	media	application	by	extending	the	basic	MERN
application

Create	an	online	marketplace	application	with	shopping	cart
and	Stripe	payments

Develop	a	media	streaming	application	using	MongoDB
GridFS

https://www.packtpub.com/web-development/full-stack-react-projects

517

Implement	server-side	rendering	with	data	to	improve	SEO

Set	up	and	use	React	360	to	develop	user	interfaces	with	VR
capabilities

Learn	industry	best	practices	to	make	MERN	stack	applications
reliable	and	scalable

React	16	Essentials	-	Second	Edition
Artemij	Fedosejev,	Adam	Boduch

ISBN:	978-1-78712-604-6

Learn	to	code	React	16	with	hands-on	examples	and	clear
tutorials

Install	powerful	React	16	tools	to	make	development	much
more	efficient

Understand	the	impact	of	React	Fiber	today	and	the	future	of
your	web	development

Utilize	the	Redux	application	architecture	with	your	React
components

Create	React	16	elements	with	properties	and	children

Get	started	with	stateless	and	stateful	React	components

Use	JSX	to	speed	up	your	React	16	development	process

Add	reactivity	to	your	React	16	components	with	lifecycle

https://www.packtpub.com/web-development/react-16-essentials-second-edition

518

methods

Test	your	React	16	components	with	the	Jest	test	framework

519

Leave	a	review	-	let
other	readers	know
what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review
on	the	site	that	you	bought	it	from.	If	you	purchased	the	book	from
Amazon,	please	leave	us	an	honest	review	on	this	book's	Amazon	page.
This	is	vital	so	that	other	potential	readers	can	see	and	use	your
unbiased	opinion	to	make	purchasing	decisions,	we	can	understand
what	our	customers	think	about	our	products,	and	our	authors	can	see
your	feedback	on	the	title	that	they	have	worked	with	Packt	to	create.	It
will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

Índice

Title	Page 2
Copyright	and	Credits 4
MERN	Quick	Start	Guide 5

Packt	Upsell 6
Why	subscribe? 7
PacktPub.com 8

Contributors 9
About	the	author 10
About	the	reviewer 11
Packt	is	searching	for	authors	like	you 14

Preface 29
What	this	book	covers 12
To	get	the	most	out	of	this	book 30
What	you	need	for	this	book 31

Download	the	example	code	files 32
Download	the	color	images 34
Code	in	Action 35
Conventions	used 36

Sections 37
Getting	ready 38
How	to	do	it... 39
Let's	test	it... 40
How	it	works... 41
There's	more... 42
See	also 43

Get	in	touch 44
Reviews 45

Introduction	to	the	MERN	Stack 46
Technical	requirements 47
Introduction 48
The	MVC	architectural	pattern 49
Installing	and	configuring	MongoDB 51

520

Getting	ready 52
How	to	do	it... 53
There's	more... 54

Installing	Node.js 55
Getting	ready 56
How	to	do	it... 57

Installing	npm	packages 58
Getting	ready 59
How	to	do	it... 61
How	it	works... 62

Building	a	Web	server	with	ExpressJS 63
Technical	requirements 64
Introduction 65
Routing	in	ExpressJS 66

Getting	ready 68
How	to	do	it... 70
Route	methods 71
Route	handlers 73
Chainable	route	methods 76
There's	more... 78

Modular	route	handlers 80
Getting	ready 81
How	to	do	it... 82

Writing	middleware	functions 84
Getting	ready 85
How	to	do	it... 87
How	it	works... 89

Writing	configurable	middleware	functions 90
Getting	ready 91
How	to	do	it... 92
Let's	test	it... 93
There's	more... 95

Writing	router-level	middleware	functions 96
Getting	ready 97
How	to	do	it... 98

521

There's	more... 100
How	it	works... 103

Writing	error-handler	middleware	functions 104
Getting	ready 106
How	to	do	it... 107

Using	ExpressJS'	built-in	middleware	function	for	serving	static
assets 109

Getting	ready 110
How	to	do	it... 111
How	it	works... 113
There's	more... 114

Parsing	the	HTTP	request	body 118
Getting	ready 119
How	to	do	it... 120
How	it	works... 123

Compressing	HTTP	responses 124
Getting	ready 125
How	to	do	it... 126
How	it	works... 128

Using	an	HTTP	request	logger 129
Getting	ready 130
How	to	do	it... 131

Managing	and	creating	virtual	domains 133
Getting	ready 134
How	to	do	it... 135
There's	more... 137

Securing	an	ExpressJS	web	application	with	Helmet 139
Getting	ready 141
How	to	do	it... 142
How	it	works... 147

Using	template	engines 149
Getting	ready 150
How	to	do	it... 151

Debugging	your	ExpressJS	web	application 155
Getting	ready 156
How	to	do	it... 157

522

How	it	works... 159
There's	more... 160

Building	a	RESTful	API 162
Technical	requirements 163
Introduction 164
CRUD	operations	using	ExpressJS'	route	methods 165

Getting	ready 167
How	to	do	it... 168
Let's	test	it... 171
How	it	works... 173

CRUD	operations	with	Mongoose 174
Getting	ready 177
How	to	do	it... 178
See	also 181

Using	Mongoose	query	builders 182
Getting	ready 184
How	to	do	it... 185
See	also 187

Defining	document	instance	methods 188
Getting	ready 189
How	to	do	it... 190
There's	more... 193
See	also 194

Defining	static	model	methods 195
Getting	ready 196
How	to	do	it... 197
There's	more... 199
See	also 200

Writing	middleware	functions	for	Mongoose 201
Getting	ready 203
How	to	do	it... 204
Document	middleware	functions 205
Query	middleware	functions 210
Model	middleware	functions 214

There's	more... 216

523

See	also 218
Writing	custom	validators	for	Mongoose's	schemas 219

Getting	ready 222
How	to	do	it... 223
See	also 226

Building	a	RESTful	API	to	manage	users	with	ExpressJS	and
Mongoose 227

Getting	ready 228
How	to	do	it... 229
Let's	test	it... 237
How	it	works... 242
See	also 243

Real-Time	Communication	with	Socket.IO	and	ExpressJS 244
Technical	requirements 245
Introduction 246
Understanding	Node.js	events 247

Getting	ready 249
How	to	do	it... 250
How	it	works... 253
There's	more... 254

Understanding	Socket.IO	events 256
The	Socket.IO	server	events 257
Socket.IO	client	events 259
Getting	ready 263
How	to	do	it... 264
How	it	works... 267

Working	with	Socket.IO	namespaces 268
Getting	ready 270
How	to	do	it... 271
Let's	test	it... 277
How	it	works... 278
There's	more... 281
io.Manager 282

Defining	and	joining	Socket.IO	rooms 283
Getting	ready 285
How	to	do	it... 286

524

There's	more... 291
Writing	middleware	for	Socket.IO 292

Getting	ready 293
How	to	do	it... 294
Let's	test	it... 301

Integrating	Socket.IO	with	ExpressJS 303
Getting	ready 304
How	to	do	it... 305
How	it	works... 308
There's	more... 309
See	also 311

Using	ExpressJS	middleware	in	Socket.IO 312
Getting	ready 314
How	to	do	it... 315
How	it	works... 323
See	also 324

Managing	State	with	Redux 325
Technical	requirements 326
Introduction 327
Defining	actions	and	action	creators 329

Getting	ready 330
How	to	do	it... 331
How	it	works... 333

Defining	reducer	functions 334
Getting	ready 337
How	to	do	it... 338
Let's	test	it... 343
How	it	works... 344

Creating	a	Redux	store 345
Getting	ready 347
How	to	do	it... 348
Let's	test	it... 354
There's	more 355

Binding	action	creators	to	the	dispatch	method 356
Getting	ready 359

525

How	to	do	it... 360
Let's	test	it... 364

Splitting	and	combining	reducers 365
Getting	ready 369
How	to	do	it... 370
Let's	test	it... 377
How	it	works... 378

Writing	Redux	store	enhancers 379
Getting	ready 380
How	to	do	it... 381
How	it	works... 385

Time	traveling	with	Redux 386
Getting	ready 387
How	to	do	it... 388
Let's	test	it... 392
There's	more 395

Understanding	Redux	middleware 396
Getting	ready 398
How	to	do	it... 399
Let's	test	it... 402
How	it	works... 403

Dealing	with	asynchronous	data	flow 404
Getting	ready 405
How	to	do	it... 406
Let's	test	it... 413
How	it	works... 414
There's	more... 416

Building	Web	Applications	with	React 417
Technical	requirements 418
Introduction 419
Understanding	React	elements	and	React	components 420

Getting	ready 425
How	to	do	it... 426
Let's	test	it... 429

Composing	components 430

526

Getting	ready 431
How	to	do	it... 432
Let's	test	it... 436
How	it	works... 437
There's	more... 438

Stateful	components	and	life	cycle	methods 439
Getting	ready 443
How	to	do	it... 444
Let's	test	it... 449

Working	with	React.PureComponent 450
Getting	ready 451
How	to	do	it... 452
Let's	test	it... 455
How	it	works... 456

React	event	handlers 457
Getting	ready 458
How	to	do	it... 459
Let's	test	it... 461
How	it	works... 462
There's	more... 463

Conditional	rendering	of	components 464
Getting	ready 466
How	to	do	it... 467
Let's	test	it... 470
How	it	works... 471

Rendering	lists	with	React 472
Getting	ready 473
How	to	do	it... 474
Let's	test	it... 477
How	it	works... 478

Working	with	forms	and	inputs	in	React 479
Getting	ready 481
How	to	do	it... 482
Let's	test	it... 485
How	it	works... 486

Understanding	refs	and	how	to	use	them 487

527

Getting	ready 489
How	to	do	it... 490
Let's	test	it... 493
How	it	works... 494

Understanding	React	portals 495
Getting	ready 496
How	to	do	it... 497
Let's	test	it... 499
How	it	works... 500

Catching	errors	with	error	boundary	components 501
Getting	ready 502
How	to	do	it... 503
Let's	test	it... 506

Type	checking	properties	with	PropTypes 507
Getting	ready 508
How	to	do	it... 509
Let's	test	it... 512
How	it	works... 513
There's	more... 514

Other	Books	You	May	Enjoy 516
Leave	a	review	-	let	other	readers	know	what	you	think 519

528

	Title Page
	Copyright and Credits
	MERN Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	What this book covers
	To get the most out of this book
	What you need for this book
	Download the example code files
	Download the color images
	Code in Action
	Conventions used

	Sections
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...
	See also

	Get in touch
	Reviews

	Introduction to the MERN Stack
	Technical requirements
	Introduction
	The MVC architectural pattern
	Installing and configuring MongoDB
	Getting ready
	How to do it...
	There's more...

	Installing Node.js
	Getting ready
	How to do it...

	Installing npm packages
	Getting ready
	How to do it...
	How it works...

	Building a Web server with ExpressJS
	Technical requirements
	Introduction
	Routing in ExpressJS
	Getting ready
	How to do it...
	Route methods
	Route handlers
	Chainable route methods
	There's more...

	Modular route handlers
	Getting ready
	How to do it...

	Writing middleware functions
	Getting ready
	How to do it...
	How it works...

	Writing configurable middleware functions
	Getting ready
	How to do it...
	Let's test it...
	There's more...

	Writing router-level middleware functions
	Getting ready
	How to do it...
	There's more...
	How it works...

	Writing error-handler middleware functions
	Getting ready
	How to do it...

	Using ExpressJS' built-in middleware function for serving static assets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Parsing the HTTP request body
	Getting ready
	How to do it...
	How it works...

	Compressing HTTP responses
	Getting ready
	How to do it...
	How it works...

	Using an HTTP request logger
	Getting ready
	How to do it...

	Managing and creating virtual domains
	Getting ready
	How to do it...
	There's more...

	Securing an ExpressJS web application with Helmet
	Getting ready
	How to do it...
	How it works...

	Using template engines
	Getting ready
	How to do it...

	Debugging your ExpressJS web application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a RESTful API
	Technical requirements
	Introduction
	CRUD operations using ExpressJS' route methods
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	CRUD operations with Mongoose
	Getting ready
	How to do it...
	See also

	Using Mongoose query builders
	Getting ready
	How to do it...
	See also

	Defining document instance methods
	Getting ready
	How to do it...
	There's more...
	See also

	Defining static model methods
	Getting ready
	How to do it...
	There's more...
	See also

	Writing middleware functions for Mongoose
	Getting ready
	How to do it...
	Document middleware functions
	Query middleware functions
	Model middleware functions

	There's more...
	See also

	Writing custom validators for Mongoose's schemas
	Getting ready
	How to do it...
	See also

	Building a RESTful API to manage users with ExpressJS and Mongoose
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	See also

	Real-Time Communication with Socket.IO and ExpressJS
	Technical requirements
	Introduction
	Understanding Node.js events
	Getting ready
	How to do it...
	How it works...
	There's more...

	Understanding Socket.IO events
	The Socket.IO server events
	Socket.IO client events
	Getting ready
	How to do it...
	How it works...

	Working with Socket.IO namespaces
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...
	io.Manager

	Defining and joining Socket.IO rooms
	Getting ready
	How to do it...
	There's more...

	Writing middleware for Socket.IO
	Getting ready
	How to do it...
	Let's test it...

	Integrating Socket.IO with ExpressJS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using ExpressJS middleware in Socket.IO
	Getting ready
	How to do it...
	How it works...
	See also

	Managing State with Redux
	Technical requirements
	Introduction
	Defining actions and action creators
	Getting ready
	How to do it...
	How it works...

	Defining reducer functions
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Creating a Redux store
	Getting ready
	How to do it...
	Let's test it...
	There's more

	Binding action creators to the dispatch method
	Getting ready
	How to do it...
	Let's test it...

	Splitting and combining reducers
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Writing Redux store enhancers
	Getting ready
	How to do it...
	How it works...

	Time traveling with Redux
	Getting ready
	How to do it...
	Let's test it...
	There's more

	Understanding Redux middleware
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Dealing with asynchronous data flow
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Building Web Applications with React
	Technical requirements
	Introduction
	Understanding React elements and React components
	Getting ready
	How to do it...
	Let's test it...

	Composing components
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Stateful components and life cycle methods
	Getting ready
	How to do it...
	Let's test it...

	Working with React.PureComponent
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	React event handlers
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Conditional rendering of components
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Rendering lists with React
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Working with forms and inputs in React
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Understanding refs and how to use them
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Understanding React portals
	Getting ready
	How to do it...
	Let's test it...
	How it works...

	Catching errors with error boundary components
	Getting ready
	How to do it...
	Let's test it...

	Type checking properties with PropTypes
	Getting ready
	How to do it...
	Let's test it...
	How it works...
	There's more...

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

